## 7

## Matrices

7.1 Introduction to Matrices ..... 2
7.2 Matrix Multiplication ..... 15
7.3 Determinants ..... 30
7.4 The Inverse of a Matrix ..... 38

## Learning outcomes

In this Workbook you will learn about matrices. In the first instance you will learn about the algebra of matrices: how they can be added, subtracted and multiplied. You will learn about a characteristic quantity associated with square matrices - the determinant. Using knowledge of determinants you will learn how to find the inverse of a matrix. Also, a second method for finding a matrix inverse will be outlined - the Gaussian elimination method.

A working knowledge of matrices is a vital attribute of any mathematician, engineer or scientist. You will find that matrices arise in many varied areas of science.

# Introduction to Matrices 

## Introduction

When we wish to solve large systems of simultaneous linear equations, which arise for example in the problem of finding the forces on members of a large framed structure, we can isolate the coefficients of the variables as a block of numbers called a matrix. There are many other applications matrices. In this Section we develop the terminology and basic properties of a matrix.

- express a system of linear equations in matrix form
- recognise and use the basic terminology associated with matrices
- carry out addition and subtraction with two given matrices or state that the operation is not possible


## 1. Applications of matrices

The solution of simultaneous linear equations is a task frequently occurring in engineering. In electrical engineering the analysis of circuits provides a ready example.
However the simultaneous equations arise, we need to study two things:
(a) how we can conveniently represent large systems of linear equations
(b) how we might find the solution of such equations.

We shall discover that knowledge of the theory of matrices is an essential mathematical tool in this area.

## Representing simultaneous linear equations

Suppose that we wish to solve the following three equations in three unknowns $x_{1}, x_{2}$ and $x_{3}$ :

$$
\begin{array}{r}
3 x_{1}+2 x_{2}-x_{3}=3 \\
x_{1}-x_{2}+x_{3}=4 \\
2 x_{1}+3 x_{2}+4 x_{3}=5
\end{array}
$$

We can isolate three facets of this system: the coefficients of $x_{1}, x_{2}, x_{3}$; the unknowns $x_{1}, x_{2}, x_{3}$; and the numbers on the right-hand sides.
Notice that in the system

$$
\begin{array}{r}
3 x+2 y-z=3 \\
x-y+z=4 \\
2 x+3 y+4 z=5
\end{array}
$$

the only difference from the first system is the names given to the unknowns. It can be checked that the first system has the solution $x_{1}=2, x_{2}=-1, x_{3}=1$. The second system therefore has the solution $x=2, y=-1, z=1$.
We can isolate the three facets of the first system by using arrays of numbers and of unknowns:

$$
\left[\begin{array}{rrr}
3 & 2 & -1 \\
1 & -1 & 1 \\
2 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]
$$

Even more conveniently we represent the arrays with letters (usually capital letters)

$$
A X=B
$$

Here, to be explicit, we write

$$
A=\left[\begin{array}{rrr}
3 & 2 & -1 \\
1 & -1 & 1 \\
2 & 3 & 4
\end{array}\right] \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad B=\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]
$$

Here $A$ is called the matrix of coefficients, $X$ is called the matrix of unknowns and $B$ is called the matrix of constants.
If we now append to $A$ the column of right-hand sides we obtain the augmented matrix for the system:

$$
\left[\begin{array}{rrr|r}
3 & 2 & -1 & 3 \\
1 & -1 & 1 & 4 \\
2 & 3 & 4 & 5
\end{array}\right]
$$

The order of the entries, or elements, is crucial. For example, all the entries in the second row relate to the second equation, the entries in column 1 are the coefficients of the unknown $x_{1}$, and those in the last column are the constants on the right-hand sides of the equations.
In particular, the entry in row 2 column 3 is the coefficient of $x_{3}$ in equation 2 .

## Representing networks

Shortest-distance problems are important in communications study. Figure 1 illustrates schematically a system of four towns connected by a set of roads.


Figure 1
The system can be represented by the matrix
$\left.\begin{array}{c} \\ a \\ b \\ c \\ d\end{array} \begin{array}{cccc}a & b & c & d \\ {\left[\begin{array}{l}0 \\ 1\end{array}\right.} & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$

The row refers to the town from which the road starts and the column refers to the town where the road ends. An entry of 1 indicates that two towns are directly connected by a road (for example $b$ and $d$ ) and an entry of zero indicates that there is no direct road (for example $a$ and $c$ ). Of course, if there is a road from $b$ to $d$ (say) it is also a road from $d$ to $b$.

In this Section we shall develop some basic ideas about matrices.

## 2. Definitions

An array of numbers, rectangular in shape, is called a matrix. The first matrix below has 3 rows and 2 columns and is said to be a ' 3 by 2 ' matrix (written $3 \times 2$ ). The second matrix is a ' 2 by 4 ' matrix (written $2 \times 4$ ).

$$
\left[\begin{array}{rr}
1 & 4 \\
-2 & 3 \\
2 & 1
\end{array}\right] \quad\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 9
\end{array}\right]
$$

The general $3 \times 3$ matrix can be written

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

where $a_{i j}$ denotes the element in row $i$, column $j$.
For example in the matrix:

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
0 & -1 & -3 \\
0 & 6 & -12 \\
5 & 7 & 123
\end{array}\right] \\
& a_{11}=0, \quad a_{12}=-1, \quad a_{13}=-3, \quad \ldots \quad a_{22}=6, \quad \ldots \quad a_{32}=7, \quad a_{33}=123
\end{aligned}
$$

## Key Point 1

## The General Matrix

A general $m \times n$ matrix $A$ has $m$ rows and $n$ columns.
The entries in the matrix $A$ are called the elements of $A$.
In matrix $A$ the element in row $i$ and column $j$ is denoted by $a_{i j}$.

A matrix with only one column is called a column vector (or column matrix).
For example, $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$ are both $3 \times 1$ column vectors.
A matrix with only one row is called a row vector (or row matrix). For example [ $2,-3,8,9]$ is a $1 \times 4$ row vector. Often the entries in a row vector are separated by commas for clarity.

## Square matrices

When the number of rows is the same as the number of columns, i.e. $m=n$, the matrix is said to be square and of order $n$ (or $m$ ).

- In an $n \times n$ square matrix $A$, the leading diagonal (or principal diagonal) is the 'north-west to south-east' collection of elements $a_{11}, a_{22}, \ldots, a_{n n}$. The sum of the elements in the leading diagonal of $A$ is called the trace of the matrix, denoted by $\operatorname{tr}(A)$.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right] \quad \operatorname{tr}(A)=a_{11}+a_{22}+\cdots+a_{n n}
$$

- A square matrix in which all the elements below the leading diagonal are zero is called an upper triangular matrix, often denoted by $U$.

$$
U=\left[\begin{array}{ccccc}
u_{11} & u_{12} & \ldots & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & \ldots & u_{2 n} \\
0 & 0 & \ldots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & u_{n n}
\end{array}\right] \quad u_{i j}=0 \quad \text { when } i>j
$$

- A square matrix in which all the elements above the leading diagonal are zero is called a lower triangular matrix, often denoted by $L$.

$$
L=\left[\begin{array}{ccccc}
l_{11} & 0 & 0 & \ldots & 0 \\
l_{21} & l_{22} & 0 & \ldots & 0 \\
\vdots & \vdots & \ldots & \ldots & 0 \\
l_{n 1} & l_{n 2} & \vdots & \ldots & l_{n n}
\end{array}\right] \quad l_{i j}=0 \quad \text { when } i<j
$$

- A square matrix where all the non-zero elements are along the leading diagonal is called a diagonal matrix, often denoted by $D$.

$$
D=\left[\begin{array}{ccccc}
d_{11} & 0 & 0 & \ldots & 0 \\
0 & d_{22} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & d_{n n}
\end{array}\right] \quad d_{i j}=0 \quad \text { when } i \neq j
$$

## Some examples of matrices and their classification

$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ is $2 \times 3$. It is not square.
$B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is $2 \times 2$. It is square.
Also, $\operatorname{tr}(A)$ does not exist, and $\operatorname{tr}(B)=1+4=5$.
$C=\left[\begin{array}{rrr}1 & 2 & 3 \\ 0 & -2 & -5 \\ 0 & 0 & 1\end{array}\right]$ and $D=\left[\begin{array}{rrr}4 & 0 & 3 \\ 0 & -2 & 5 \\ 0 & 0 & 1\end{array}\right]$ are both $3 \times 3$, square and upper triangular.
Also, $\operatorname{tr}(C)=0$ and $\operatorname{tr}(D)=3$.

$$
E=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & -2 & 0 \\
3 & -5 & 1
\end{array}\right] \text { and } F=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
1 & 4 & 0 \\
0 & 1 & 1
\end{array}\right] \text { are both } 3 \times 3 \text {, square and lower triangular. }
$$

Also, $\operatorname{tr}(E)=0$ and $\operatorname{tr}(F)=4$.

$$
G=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -3
\end{array}\right] \text { and } H=\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \text { are both } 3 \times 3 \text {, square and diagonal. }
$$

Also, $\operatorname{tr}(G)=0$ and $\operatorname{tr}(H)=6$.

Classify the following matrices (and, where possible, find the trace):

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \quad B=\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
-1 & -3 & -2 & -4
\end{array}\right] \quad C=\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{array}\right]
$$

## Your solution

## Answer

$A$ is $3 \times 2, \quad B$ is $3 \times 4, \quad C$ is $4 \times 4$ and square.
The trace is not defined for $A$ or $B$. However, $\operatorname{tr}(C)=34$.

Classify the following matrices:
$A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right] \quad B=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right] \quad C=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right] \quad D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

## Your solution

## Answer

$A$ is $3 \times 3$ and square, $B$ is $3 \times 3$ lower triangular, $\quad C$ is $3 \times 3$ upper triangular and $D$ is $3 \times 3$ diagonal.

## Equality of matrices

As we noted earlier, the terms in a matrix are called the elements of the matrix.

$$
\text { The elements of the matrix } \quad A=\left[\begin{array}{rr}
1 & 2 \\
-1 & -4
\end{array}\right] \quad \text { are } \quad 1,2,-1,-4
$$

We say two matrices $A, B$ are equal to each other only if $A$ and $B$ have the same number of rows and the same number of columns and if each element of $A$ is equal to the corresponding element of $B$. When this is the case we write $A=B$. For example if the following two matrices are equal:

$$
A=\left[\begin{array}{rr}
1 & \alpha \\
-1 & -\beta
\end{array}\right] \quad B=\left[\begin{array}{rr}
1 & 2 \\
-1 & -4
\end{array}\right]
$$

then we can conclude that $\alpha=2$ and $\beta=4$.

## The unit matrix

The unit matrix or the identity matrix, denoted by $I_{n}$ (or, often, simply $I$ ), is the diagonal matrix of order $n$ in which all diagonal elements are 1 .
Hence, for example, $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

## The zero matrix

The zero matrix or null matrix is the matrix all of whose elements are zero. There is a zero matrix for every size. For example the $2 \times 3$ and $2 \times 2$ cases are:

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

Zero matrices, of whatever size, are denoted by $\underline{0}$.

## The transpose of a matrix

The transpose of a matrix $A$ is a matrix where the rows of $A$ become the columns of the new matrix and the columns of $A$ become its rows. For example

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \text { becomes }\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

The resulting matrix is called the transposed matrix of $A$ and denoted $A^{T}$. In the previous example it is clear that $A^{T}$ is not equal to $A$ since the matrices are of different sizes. If $A$ is square $n \times n$ then $A^{T}$ will also be $n \times n$.

## Example 1

Find the transpose of the matrix $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$

## Solution

Interchanging rows with columns we find

$$
B^{T}=\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]
$$

Both matrices are $3 \times 3$ but $B$ and $B^{T}$ are clearly different.
When the transpose of a matrix is equal to the original matrix i.e. $A^{T}=A$, then we say that the matrix $A$ is symmetric. (This is because it has symmetry about the leading diagonal.)
In Example $1 B$ is not symmetric.

## Example 2

Show that the matrix $C=\left[\begin{array}{rrr}1 & -2 & 3 \\ -2 & 4 & -5 \\ 3 & -5 & 6\end{array}\right]$ is symmetric.

## Solution

Taking the transpose of $C$ :

$$
C^{T}=\left[\begin{array}{rrr}
1 & -2 & 3 \\
-2 & 4 & -5 \\
3 & -5 & 6
\end{array}\right] .
$$

Clearly $C^{T}=C$ and so $C$ is a symmetric matrix. Notice how the leading diagonal acts as a "mirror"; for example $c_{12}=-2$ and $c_{21}=-2$. In general $c_{i j}=c_{j i}$ for a symmetric matrix.

## Task

Find the transpose of each of the following matrices. Which are symmetric?

$$
\begin{array}{ll}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], & B=\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
D=\left[\begin{array}{ll}
1 & 2 \\
4 & 5 \\
7 & 8
\end{array}\right] & E=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{array}
$$

## Your solution

## Answer

$A^{T}=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right], \quad B^{T}=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right] \quad C^{T}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]=C$, symmetric
$D^{T}=\left[\begin{array}{ccc}1 & 4 & 7 \\ 2 & 5 & 8\end{array}\right] \quad E^{T}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=E$, symmetric

## 3. Addition and subtraction of matrices

Under what circumstances can we add two matrices i.e. define $A+B$ for given matrices $A, B$ ?
Consider

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rrr}
5 & 6 & 9 \\
7 & 8 & 10
\end{array}\right]
$$

There is no sensible way to define $A+B$ in this case since $A$ and $B$ are different sizes.
However, if we consider matrices of the same size then addition can be defined in a very natural way. Consider $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]$. The 'natural' way to add $A$ and $B$ is to add corresponding elements together:

$$
A+B=\left[\begin{array}{ll}
1+5 & 2+6 \\
3+7 & 4+8
\end{array}\right]=\left[\begin{array}{rr}
6 & 8 \\
10 & 12
\end{array}\right]
$$

In general if $A$ and $B$ are both $m \times n$ matrices, with elements $a_{i j}$ and $b_{i j}$ respectively, then their sum is a matrix $C$, also $m \times n$, such that the elements of $C$ are

$$
c_{i j}=a_{i j}+b_{i j} \quad i=1,2, \ldots, m \quad j=1,2, \ldots, n
$$

In the above example

$$
c_{11}=a_{11}+b_{11}=1+5=6 \quad c_{21}=a_{21}+b_{21}=3+7=10 \quad \text { and so on. }
$$

Subtraction of matrices follows along similar lines:

$$
D=A-B=\left[\begin{array}{ll}
1-5 & 2-6 \\
3-7 & 4-8
\end{array}\right]=\left[\begin{array}{ll}
-4 & -4 \\
-4 & -4
\end{array}\right]
$$

## 4. Multiplication of a matrix by a number

There is also a natural way of defining the product of a matrix with a number. Using the matrix $A$ above, we note that

$$
A+A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
6 & 8
\end{array}\right]
$$

What we see is that $2 A$ (which is the shorthand notation for $A+A$ ) is obtained by multiplying every element of $A$ by 2 .
In general if $A$ is an $m \times n$ matrix with typical element $a_{i j}$ then the product of a number $k$ with $A$ is written $k A$ and has the corresponding elements $k a_{i j}$.

Hence, again using the matrix $A$ above,

$$
7 A=7\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{rr}
7 & 14 \\
21 & 28
\end{array}\right]
$$

Similarly:

$$
-3 A=\left[\begin{array}{rr}
-3 & -6 \\
-9 & -12
\end{array}\right]
$$

For the following matrices find, where possible, $A+B, A-B, B-A, 2 A$.

1. $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
2. $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right] \quad B=\left[\begin{array}{rrr}1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1\end{array}\right]$
3. $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right] \quad B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$

## Your solution

## Answer

1. $A+B=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right] \quad A-B=\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right] \quad B-A=\left[\begin{array}{rr}0 & -1 \\ -2 & -3\end{array}\right] \quad 2 A=\left[\begin{array}{ll}2 & 4 \\ 6 & 8\end{array}\right]$
2. $A+B=\left[\begin{array}{rrr}2 & 3 & 4 \\ 3 & 4 & 5 \\ 8 & 9 & 10\end{array}\right] \quad A-B=\left[\begin{array}{lll}0 & 1 & 2 \\ 5 & 6 & 7 \\ 6 & 7 & 8\end{array}\right] \quad B-A=\left[\begin{array}{rrr}0 & -1 & -2 \\ -5 & -6 & -7 \\ -6 & -7 & -8\end{array}\right]$
$2 A=\left[\begin{array}{rrr}2 & 4 & 6 \\ 8 & 10 & 12 \\ 14 & 16 & 18\end{array}\right]$
3. None of $A+B, A-B, B-A$, are defined. $\quad 2 A=\left[\begin{array}{rrr}2 & 4 & 6 \\ 8 & 10 & 12 \\ 14 & 16 & 18\end{array}\right]$

## 5. Some simple matrix properties

Using the definition of matrix addition described above we can easily verify the following properties of matrix addition:

Key Point 2<br>Basic Properties of Matrices<br>Matrix addition is commutative: $\quad A+B=B+A$<br>Matrix addition is associative: $\quad A+(B+C)=(A+B)+C$<br>The distributive law holds: $k(A+B)=k A+k B$

These Key Point results follow from the fact that $a_{i j}+b_{i j}=b_{i j}+a_{i j}$ etc.
We can also show that the transpose of a matrix satisfies the following simple properties:

## Key Point 3

Properties of Transposed Matrices

$$
\begin{aligned}
(A+B)^{T} & =A^{T}+B^{T} \\
(A-B)^{T} & =A^{T}-B^{T} \\
\left(A^{T}\right)^{T} & =A
\end{aligned}
$$

## Example 3

Show that $\left(A^{T}\right)^{T}=A$ for the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$

## Solution

$A^{T}=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$ so that $\left(A^{T}\right)^{T}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=A$

For the matrices $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], \quad B=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]$ verify that
(i) $3(A+B)=3 A+3 B$
(ii) $(A-B)^{T}=A^{T}-B^{T}$.

## Your solution

## Answer

(i) $A+B=\left[\begin{array}{ll}2 & 1 \\ 2 & 5\end{array}\right] ; \quad 3(A+B)=\left[\begin{array}{rr}6 & 3 \\ 6 & 15\end{array}\right] ; \quad 3 A=\left[\begin{array}{rr}3 & 6 \\ 9 & 12\end{array}\right]$;

$$
3 B=\left[\begin{array}{rr}
3 & -3 \\
-3 & 3
\end{array}\right] ; \quad 3 A+3 B=\left[\begin{array}{rr}
6 & 3 \\
6 & 15
\end{array}\right] .
$$

(ii) $A-B=\left[\begin{array}{cc}0 & 3 \\ 4 & 3\end{array}\right] ; \quad(A-B)^{T}=\left[\begin{array}{cc}0 & 4 \\ 3 & 3\end{array}\right] ; \quad A^{T}=\left[\begin{array}{cc}1 & 3 \\ 2 & 4\end{array}\right]$; $B^{T}=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right] ; \quad A^{T}-B^{T}=\left[\begin{array}{ll}0 & 4 \\ 3 & 3\end{array}\right]$.

## Exercises

1. Find the coefficient matrix $A$ of the system:

$$
\begin{aligned}
2 x_{1}+3 x_{2}-x_{3} & =1 \\
4 x_{1}+4 x_{2} & =0 \\
2 x_{1}-x_{2}-x_{3} & =0
\end{aligned}
$$

If $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 1\end{array}\right]$ determine $\left(3 A^{T}-B\right)^{T}$.
2. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & 4 \\ 0 & 1 \\ 2 & 7\end{array}\right]$ verify that $3\left(A^{T}-B\right)=\left(3 A-3 B^{T}\right)^{T}$.

## Answers

1. $A=\left[\begin{array}{rrr}2 & 3 & -1 \\ 4 & 4 & 0 \\ 2 & -1 & -1\end{array}\right], \quad A^{T}=\left[\begin{array}{rrr}2 & 4 & 2 \\ 3 & 4 & -1 \\ -1 & 0 & -1\end{array}\right], \quad 3 A^{T}=\left[\begin{array}{rrr}6 & 12 & 6 \\ 9 & 12 & -3 \\ -3 & 0 & -3\end{array}\right]$

$$
3 A^{T}-B=\left[\begin{array}{rrr}
5 & 10 & 3 \\
5 & 7 & -9 \\
-3 & 0 & -4
\end{array}\right] \quad\left(3 A^{T}-B\right)^{T}=\left[\begin{array}{crr}
5 & 5 & -3 \\
10 & 7 & 0 \\
3 & -9 & -4
\end{array}\right]
$$

2. $A^{T}=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right], \quad A^{T}-B=\left[\begin{array}{rr}2 & 0 \\ 2 & 4 \\ 1 & -1\end{array}\right], \quad 3\left(A^{T}-B\right)=\left[\begin{array}{rr}6 & 0 \\ 6 & 12 \\ 3 & -3\end{array}\right]$

$$
B^{T}=\left[\begin{array}{ccc}
-1 & 0 & 2 \\
4 & 1 & 7
\end{array}\right], \quad 3 A-3 B^{T}=\left[\begin{array}{rrr}
3 & 6 & 9 \\
12 & 15 & 18
\end{array}\right]-\left[\begin{array}{rrr}
-3 & 0 & 6 \\
12 & 3 & 21
\end{array}\right]=\left[\begin{array}{rrr}
6 & 6 & 3 \\
0 & 12 & -3
\end{array}\right]
$$

## Matrix Multiplication

## Introduction

When we wish to multiply matrices together we have to ensure that the operation is possible - and this is not always so. Also, unlike number arithmetic and algebra, even when the product exists the order of multiplication may have an effect on the result. In this Section we pick our way through the minefield of matrix multiplication.

## Prerequisites

Before starting this Section you should ...

- understand the concept of a matrix and associated terms.
- decide when the product $A B$ exists


## Learning Outcomes

On completion you should be able to ...

- recognise that $A B \neq B A$ in most cases
- carry out the multiplication $A B$
- explain what is meant by the identity matrix $I$


## 1. Multiplying row matrices and column matrices together

Let $A$ be a $1 \times 2$ row matrix and $B$ be a $2 \times 1$ column matrix:

$$
A=\left[\begin{array}{ll}
a & b
\end{array}\right] \quad B=\left[\begin{array}{l}
c \\
d
\end{array}\right]
$$

The product of these two matrices is written $A B$ and is the $1 \times 1$ matrix defined by:

$$
A B=\left[\begin{array}{ll}
a & b
\end{array}\right] \times\left[\begin{array}{l}
c \\
d
\end{array}\right]=[a c+b d]
$$

Note that corresponding elements are multiplied together and the results are then added together. For example

$$
\left[\begin{array}{cc}
2 & -3
\end{array}\right] \times\left[\begin{array}{l}
6 \\
5
\end{array}\right]=[12-15]=[-3]
$$

This matrix product is easily generalised to other row and column matrices. For example if $C$ is a $1 \times 4$ row matrix and $D$ is a $4 \times 1$ column matrix:

$$
C=\left[\begin{array}{llll}
2 & -4 & 3 & 2
\end{array}\right] \quad B=\left[\begin{array}{r}
3 \\
3 \\
-2 \\
5
\end{array}\right]
$$

then we define the product of $C$ with $D$ as

$$
C D=\left[\begin{array}{llll}
2 & -4 & 3 & 2
\end{array}\right] \times\left[\begin{array}{r}
3 \\
3 \\
-2 \\
5
\end{array}\right]=[6-12-6+10]=[-2]
$$

The only requirement is that the number of elements of the row matrix is the same as the number of elements of the column matrix.

## 2. Multiplying two $2 \times 2$ matrices

If $A$ and $B$ are two matrices then the product $A B$ is obtained by multiplying the rows of $A$ with the columns of $B$ in the manner described above. This will only be possible if the number of elements in the rows of $A$ is the same as the number of elements in the columns of $B$. In particular, we define the product of two $2 \times 2$ matrices $A$ and $B$ to be another $2 \times 2$ matrix $C$ whose elements are calculated according to the following pattern

$$
\begin{gathered}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \times\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]=} \\
A
\end{gathered}
$$

The rule for calculating the elements of $C$ is described in the following Key Point:

Mey Point 4

$$
A B=C
$$

The element in the $i^{\text {th }}$ row and $j^{\text {th }}$ column of $C$ is obtained by multiplying the $i^{\text {th }}$ row of $A$ with the $j^{\text {th }}$ column of $B$.

We illustrate this construction for the abstract matrices $A$ and $B$ given above:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \times\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]=\left[\begin{array}{cc}
{\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{l}
w \\
y
\end{array}\right]} & {\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]} \\
{\left[\begin{array}{ll}
c & d
\end{array}\right]\left[\begin{array}{l}
w \\
y
\end{array}\right]} & {\left[\begin{array}{ll}
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{ll}
a w+b y & a x+b z \\
c w+d y & c x+d z
\end{array}\right]
$$

For example

$$
\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right] \times\left[\begin{array}{ll}
2 & 4 \\
6 & 1
\end{array}\right]=\left[\begin{array}{ll}
{\left[\begin{array}{ll}
2 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
6
\end{array}\right]} & {\left[\begin{array}{ll}
2 & -1
\end{array}\right]\left[\begin{array}{l}
4 \\
1
\end{array}\right]} \\
{\left[\begin{array}{ll}
3 & -2
\end{array}\right]\left[\begin{array}{l}
2 \\
6
\end{array}\right]}
\end{array}\left[\begin{array}{ll}
3 & -2
\end{array}\right]\left[\begin{array}{l}
4 \\
1
\end{array}\right]\left[\begin{array}{cc}
-2 & 7 \\
-6 & 10
\end{array}\right]\right.
$$

First write down row 1 of $A$, column 2 of $B$ and form the first element in product $A B$ :

## Your solution

## Answer

$[1,2]$ and $\left[\begin{array}{r}-1 \\ 1\end{array}\right]$; their product is $1 \times(-1)+2 \times 1=1$.
Now repeat the process for row 2 of $A$, column 1 of $B$ :

## Your solution

## Answer

$[3,4]$ and $\left[\begin{array}{r}1 \\ -2\end{array}\right]$. Their product is $3 \times 1+4 \times(-2)=-5$

Finally find the two other elements of $C=A B$ and hence write down the matrix $C$ :

## Your solution

## Answer

Row 1 column 1 is $1 \times 1+2 \times(-2)=-3$. Row 2 column 2 is $3 \times(-1)+4 \times 1=1$
$C=\left[\begin{array}{ll}-3 & 1 \\ -5 & 1\end{array}\right]$

Clearly, matrix multiplication is tricky and not at all 'natural'. However, it is a very important mathematical procedure with many engineering applications so must be mastered.

## 3. Some surprising results

We have already calculated the product $A B$ where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \text { and } B=\left[\begin{array}{rr}
1 & -1 \\
-2 & 1
\end{array}\right]
$$

Now complete the following task in which you are asked to determine the product $B A$, i.e. with the matrices in reverse order.

For matrices $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
and $B=\left[\begin{array}{rr}1 & -1 \\ -2 & 1\end{array}\right]$ form the products of row 1 of $B$ and column 1 of $A$ row $B$ and column 2 of $A$ row 2 of $B$ and column 1 of $A$ row 2 of $B$ and column 2 of $A$

Now write down the matrix $B A$ :

## Your solution

## Answer

row 1 , column 1 is $1 \times 1+(-1) \times 3=-2$
row 2 , column 1 is $-2 \times 1+1 \times 3=1$

$$
B A \text { is }\left[\begin{array}{rr}
-2 & -2 \\
1 & 0
\end{array}\right]
$$

It is clear that $A B$ and $B A$ are not in general the same. In fact it is the exception that $A B=B A$. In the special case in which $A B=B A$ we say that the matrices $A$ and $B$ commute.

Task
Calculate $A B$ and $B A$ where

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

## Your solution

## Answer

$$
A B=B A=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

We call $B$ the $2 \times 2$ zero matrix written $\underline{0}$ so that $A \times \underline{0}=\underline{0} \times A=0$ for any matrix $A$.
Now in the multiplication of numbers, the equation

$$
a b=0
$$

implies that either $a$ is zero or $b$ is zero or both are zero. The following task shows that this is not necessarily true for matrices.

Carry out the multiplication $A B$ where

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad B=\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

## Your solution

## Answer

$$
A B=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Here we have a zero product yet neither $A$ nor $B$ is the zero matrix! Thus the statement $A B=0$ does not allow us to conclude that either $A=\underline{0}$ or $B=\underline{0}$.

## Your solution

## Answer

$$
A B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=A
$$

The matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is called the identity matrix or unit matrix of order 2 , and is usually denoted by the symbol $I$. (Strictly we should write $I_{2}$, to indicate the size.) $I$ plays the same role in matrix multiplication as the number 1 does in number multiplication.

Hence
just as $\quad a \times 1=1 \times a=a$ for any number $a, \quad$ so $\quad A I=I A=A$ for any matrix $A$.

## 4. Multiplying two $3 \times 3$ matrices

The definition of the product $C=A B$ where $A$ and $B$ are two $3 \times 3$ matrices is as follows

$$
C=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{lll}
r & s & t \\
u & v & w \\
x & y & z
\end{array}\right]=\left[\begin{array}{ccc}
a r+b u+c x & a s+b v+c y & a t+b w+c z \\
d r+e u+f x & d s+e v+f y & d t+e w+f z \\
g r+h u+i x & g s+h v+i y & g t+h w+i z
\end{array}\right]
$$

This looks a rather daunting amount of algebra but in fact the construction of the matrix on the right-hand side is straightforward if we follow the simple rule from Key Point 4 that the element in the $i^{\text {th }}$ row and $j^{\text {th }}$ column of $C$ is obtained by multiplying the $i^{\text {th }}$ row of $A$ with the $j^{\text {th }}$ column of $B$.

For example, to obtain the element in row 2 , column 3 of $C$ we take row 2 of $A$ : $[d, e, f]$ and multiply it with column 3 of $B$ in the usual way to produce $[d t+e w+f z]$.

By repeating this process we obtain every element of $C$.

Task
Calculate $A B=\left[\begin{array}{rrr}1 & 2 & -1 \\ 3 & 4 & 0 \\ 1 & 5 & -2\end{array}\right]\left[\begin{array}{rrr}2 & -1 & 3 \\ 1 & -2 & 1 \\ 0 & 3 & -2\end{array}\right]$

First find the element in row 2 column 1 of the product:

## Your solution

## Answer

Row 2 of $A$ is $(3,4,0)$ column 1 of $B$ is $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$
The combination required is $3 \times 2+4 \times 1+(0) \times(0)=10$.
Now complete the multiplication to find all the elements of the matrix $A B$ :

## Your solution

## Answer

In full detail, the elements of $A B$ are:
$\left[\begin{array}{lll}1 \times 2+2 \times 1+(-1) \times 0 & 1 \times(-1)+2 \times(-2)+(-1) \times 3 & 1 \times 3+2 \times 1+(-1) \times(-2) \\ 3 \times 2+4 \times 1+0 \times 0 & 3 \times(-1)+4 \times(-2)+0 \times 3 & 3 \times 3+4 \times 1+0 \times(-2) \\ 1 \times 2+5 \times 1+(-2) \times 0 & 1 \times(-1)+5 \times(-2)+(-2) \times 3 & 1 \times 3+5 \times 1+(-2) \times(-2)\end{array}\right]$
i.e. $A B=\left[\begin{array}{rrr}4 & -8 & 7 \\ 10 & -11 & 13 \\ 7 & -17 & 12\end{array}\right]$

The $3 \times 3$ unit matrix is: $I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \quad$ and as in the $2 \times 2$ case this has the property that
$A I=I A=A$
The $3 \times 3$ zero matrix is $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

## 5. Multiplying non-square matrices together

So far, we have just looked at multiplying $2 \times 2$ matrices and $3 \times 3$ matrices. However, products between non-square matrices may be possible.

## Key Point 5

## General Matrix Products

The general rule is that an $n \times p$ matrix $A$ can be multiplied by a $p \times m$ matrix $B$ to form an $n \times m$ matrix $A B=C$.

In words:
For the matrix product $A B$ to be defined the number of columns of $A$ must equal the number of rows of $B$.

The elements of $C$ are found in the usual way:
The element in the $i^{\text {th }}$ row and $j^{\text {th }}$ column of $C$ is obtained by multiplying the $i^{\text {th }}$ row of $A$ with the $j^{\text {th }}$ column of $B$.

## Example 4

Find the product $A B$ if $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 5 \\ 6 & 1 \\ 4 & 3\end{array}\right]$

## Solution

Since $A$ is a $2 \times 3$ and $B$ is a $3 \times 2$ matrix the product $A B$ can be found and results in a $2 \times 2$ matrix.

$$
A B=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 3 & 4
\end{array}\right] \times\left[\begin{array}{ll}
2 & 5 \\
6 & 1 \\
4 & 3
\end{array}\right]=\left[\begin{array}{l}
{\left[\begin{array}{lll}
1 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
6 \\
4
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
5 \\
1 \\
3
\end{array}\right]} \\
{\left[\begin{array}{lll}
2 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
2 \\
6 \\
4
\end{array}\right]}
\end{array} \begin{array}{lll}
2 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
5 \\
1 \\
3
\end{array}\right]\left[\begin{array}{ll}
22 & 13 \\
38 & 25
\end{array}\right]
$$

Task
Obtain the product $A B$ if $A=\left[\begin{array}{ll}1 & -2 \\ 2 & -3\end{array}\right]$ and $B=\left[\begin{array}{lll}2 & 4 & 1 \\ 6 & 1 & 0\end{array}\right]$

## Your solution

## Answer

$A B$ is a $2 \times 3$ matrix.

$$
\begin{aligned}
A B=\left[\begin{array}{ll}
1 & -2 \\
2 & -3
\end{array}\right] \times\left[\begin{array}{lll}
2 & 4 & 1 \\
6 & 1 & 0
\end{array}\right]= & {\left[\begin{array}{ll}
{\left[\begin{array}{ll}
1 & -2
\end{array}\right]\left[\begin{array}{l}
2 \\
6
\end{array}\right]\left[\begin{array}{ll}
1 & -2
\end{array}\right]\left[\begin{array}{l}
4 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
{\left[\begin{array}{ll}
2 & -3
\end{array}\right]\left[\begin{array}{l}
2 \\
6
\end{array}\right]\left[\begin{array}{ll}
2 & -3
\end{array}\right]\left[\begin{array}{l}
4 \\
1
\end{array}\right]\left[\begin{array}{ll}
2 & -3
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]}
\end{array}\right] } \\
& =\left[\begin{array}{lll}
-10 & 2 & 1 \\
-14 & 5 & 2
\end{array}\right]
\end{aligned}
$$

## 6. The rules of matrix multiplication

It is worth noting that the process of multiplication can be continued to form products of more than two matrices.
Although two matrices may not commute (i.e. in general $A B \neq B A$ ) the associative law always holds i.e. for matrices which can be multiplied,

$$
A(B C)=(A B) C .
$$

The general principle is keep the left to right order, but within that limitation any two adjacent matrices can be multiplied.
It is important to note that it is not always possible to multiply together any two given matrices.
For example if $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]$ then $A B=\left[\begin{array}{ccc}a+2 d & b+2 e & c+2 f \\ 3 a+4 d & 3 b+4 e & 3 c+4 f\end{array}\right]$. However $B A=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is not defined since each row of $B$ has three elements whereas each column of $A$ has two elements and we cannot multiply these elements in the manner described.

State which of the products $A B, B A, A C, C A, B C, C B,(A B) C, A(C B)$ is defined and state the size $(n \times m)$ of the product when defined.

## Your solution

$A B$
$B A$
AC
$C A$
$B C$
$C B$
$(A B) C$
$A(C B)$

## Answer

| $A$ | $B$ |  | $B$ | $A$ |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| $2 \times 3$ | $2 \times 2$ |  |  |  |  | not possible $\quad$ possible; result $2 \times 3$

We now list together some properties of matrix multiplication and compare them with corresponding properties for multiplication of numbers.

## Key Point 6

Matrix algebra

$$
\begin{gathered}
A(B+C)=A B+A C \\
A B \neq B A \text { in general } \\
A(B C)=(A B) C \\
A I=I A=A \\
A \underline{0}=\underline{0} A=\underline{0}
\end{gathered}
$$

$A B$ may not be possible
$A B=\underline{0}$ does not imply $A=\underline{0}$ or $B=\underline{0}$

Number algebra

$$
a(b+c)=a b+a c
$$

$$
a b=b a
$$

$$
a(b c)=(a b) c
$$

$$
1 . a=a .1=a
$$

$0 . a=a .0=0$
$a b$ is always possible $a b=0 \rightarrow a=0$ or $b=0$

## Application of matrices to networks

A network is a collection of points (nodes) some of which are connected together by lines (paths). The information contained in a network can be conveniently stored in the form of a matrix.

## Example 5

Petrol is delivered to terminals $T_{1}$ and $T_{2}$. They distribute the fuel to 3 storage depots $\left(S_{1}, S_{2}, S_{3}\right)$. The network diagram below shows what fraction of the fuel goes from each terminal to the three storage depots. In turn the 3 depots supply fuel to 4 petrol stations ( $P_{1}, P_{2}, P_{3}, P_{4}$ ) as shown in Figure 2:


Figure 2
Show how this situation may be described using matrices.

## Solution

Denote the amount of fuel, in litres, flowing from $T_{1}$ by $t_{1}$ and from $T_{2}$ by $t_{2}$ and the quantity being received at $S_{i}$ by $s_{i}$ for $i=1,2,3$. This situation is described in the following diagram:


From this diagram we see that

$$
\begin{aligned}
& s_{1}=0.4 t_{1}+0.5 t_{2} \\
& s_{2}=0.4 t_{1}+0.2 t_{2} \\
& s_{3}=0.2 t_{1}+0.3 t_{2}
\end{aligned} \quad \text { or, in matrix form: } \quad\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{ll}
0.4 & 0.5 \\
0.4 & 0.2 \\
0.2 & 0.3
\end{array}\right]\left[\begin{array}{l}
t_{1} \\
t_{2}
\end{array}\right]
$$

## Solution (contd.)

In turn the 3 depots supply fuel to 4 petrol stations as shown in the next diagram:


If the petrol stations receive $p_{1}, p_{2}, p_{3}, p_{4}$ litres respectively then from the diagram we have:

$$
\begin{array}{ll}
p_{1}= & 0.6 s_{1}+0.2 s_{2} \\
p_{2}= & 0.2 s_{1}+0.5 s_{2} \\
p_{3}= & 0.2 s_{1}+0.2 s_{2}+0.4 s_{3} \\
p_{4}= & 0.1 s_{2}+0.6 s_{3}
\end{array} \text { or, in matrix form: }\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4}
\end{array}\right]=\left[\begin{array}{ccc}
0.6 & 0.2 & 0 \\
0.2 & 0.5 & 0 \\
0.2 & 0.2 & 0.4 \\
0 & 0.1 & 0.6
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]
$$

Combining the equations, substituting expressions for $s_{1}, s_{2}, s_{3}$ in the equations for $p_{1}, p_{2}, p_{3}, p_{4}$ we get:

$$
\begin{aligned}
p_{1} & =0.6 s_{1}+0.2 s_{2} \\
& =0.6\left(0.4 t_{1}+0.5 t_{2}\right)+0.2\left(0.4 t_{1}+0.2 t_{1}\right) \\
& =0.32 t_{1}+0.34 t_{2}
\end{aligned}
$$

with similar results for $p_{2}, p_{3}$ and $p_{4}$.
This is equivalent to combining the two networks. The results can be obtained more easily by multiplying the matrices:

$$
\begin{aligned}
{\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4}
\end{array}\right] } & =\left[\begin{array}{ccc}
0.6 & 0.2 & 0 \\
0.2 & 0.5 & 0 \\
0.2 & 0.2 & 0.4 \\
0 & 0.1 & 0.6
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0.6 & 0.2 & 0 \\
0.2 & 0.5 & 0 \\
0.2 & 0.2 & 0.4 \\
0 & 0.1 & 0.6
\end{array}\right]\left[\begin{array}{ll}
0.4 & 0.5 \\
0.4 & 0.2 \\
0.2 & 0.3
\end{array}\right]\left[\begin{array}{l}
t_{1} \\
t_{2}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0.32 & 0.34 \\
0.28 & 0.20 \\
0.24 & 0.26 \\
0.16 & 0.20
\end{array}\right]\left[\begin{array}{l}
t_{1} \\
t_{2}
\end{array}\right]=\left[\begin{array}{l}
0.32 t_{1}+0.34 t_{2} \\
0.28 t_{1}+0.20 t_{2} \\
0.24 t_{1}+0.26 t_{2} \\
0.16 t_{1}+0.20 t_{2}
\end{array}\right]
\end{aligned}
$$

## Engineering Example 1

## Communication network

## Problem in words

Figure 3 represents a communication network. Vertices $a, b, f$ and $g$ represent offices. Vertices $c, d$ and $e$ represent switching centres. The numbers marked along the edges represent the number of connections between any two vertices. Calculate the number of routes from $a$ and $b$ to $f$ and $g$


Figure 3: A communication network where $a, b, f$ and $g$ are offices and $c, d$ and $e$ are switching centres

## Mathematical statement of the problem

The number of routes from $a$ to $f$ can be calculated by taking the number via $c$ plus the number via $d$ plus the number via $e$. In each case this is given by multiplying the number of connections along the edges connecting $a$ to $c, c$ to $f$ etc. This gives the result:
Number of routes from $a$ to $f=3 \times 2+4 \times 6+1 \times 1=31$.
The nature of matrix multiplication means that the number of routes is obtained by multiplying the matrix representing the number of connections from $a b$ to $c d e$ by the matrix representing the number of connections from cde to $f g$.

## Mathematical analysis

The matrix representing the number of routes from $a b$ to $c d e$ is:

$$
\begin{gathered}
c \\
a \\
b
\end{gathered}\left(\begin{array}{ccc}
3 & d & e \\
2 & 1 & 3
\end{array}\right)
$$

The matrix representing the number of routes from $c d e$ to $f g$ is:

$$
\begin{gathered}
f \\
c\left(\begin{array}{ll}
f & g \\
d & 1 \\
e & 3 \\
6 & 2
\end{array}\right)
\end{gathered}
$$

The product of these two matrices gives the total number of routes.

$$
\left(\begin{array}{lll}
3 & 4 & 1 \\
2 & 1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
6 & 3 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
3 \times 2+4 \times 6+1 \times 1 & 3 \times 1+4 \times 3+1 \times 2 \\
2 \times 2+1 \times 6+3 \times 1 & 2 \times 1+1 \times 3+3 \times 2
\end{array}\right)=\left(\begin{array}{ll}
31 & 17 \\
13 & 11
\end{array}\right)
$$

## Interpretation

We can interpret the resulting (product) matrix by labelling the columns and rows.

$$
\begin{gathered}
\\
a \\
b
\end{gathered}\left(\begin{array}{cc}
f & g \\
31 & 17 \\
13 & 11
\end{array}\right)
$$

Hence there are 31 routes from $a$ to $f, 17$ from $a$ to $g, 13$ from $b$ to $f$ and 11 from $b$ to $g$.

## Exercises

1. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad B=\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right] \quad C=\left[\begin{array}{ll}0 & -1 \\ 2 & -3\end{array}\right]$ find
(a) $A B$,
(b) $A C$,
(c) $(A+B) C$,
(d) $A C+B C$
(e) $2 A-3 C$
2. If a rotation through an angle $\theta$ is represented by the matrix $A=\left[\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ and a second rotation through an angle $\phi$ is represented by the matrix $B=\left[\begin{array}{rr}\cos \phi & \sin \phi \\ -\sin \phi & \cos \phi\end{array}\right]$ show that both $A B$ and $B A$ represent a rotation through an angle $\theta+\phi$.
3. If $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ -1 & -1 & -1 \\ 2 & 2 & 2\end{array}\right], \quad B=\left[\begin{array}{rr}2 & 4 \\ -1 & 2 \\ 5 & 6\end{array}\right], C=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$, find $A B$ and $B C$.
4. If $A=\left[\begin{array}{rcr}1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right], \quad B=\left[\begin{array}{rrr}1 & 2 & 3 \\ 5 & 0 & 0 \\ 1 & 2 & -1\end{array}\right], \quad C=\left[\begin{array}{r}0 \\ 1 \\ -2\end{array}\right]$,
verify $A(B C)=(A B) C$.
5. If $A=\left[\begin{array}{rrr}2 & 3 & -1 \\ 0 & 1 & 2 \\ 4 & 5 & 6\end{array}\right]$ then show that $A A^{T}$ is symmetric.
6. If $A=\left[\begin{array}{cc}11 & 0 \\ 2 & 1\end{array}\right] \quad B=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 1 & 3\end{array}\right]$ verify that $(A B)^{T}=\left[\begin{array}{cc}0 & 1 \\ 11 & 3 \\ 22 & 7\end{array}\right]=B^{T} A^{T}$

## Answers

1. (a) $A B=\left[\begin{array}{ll}19 & 22 \\ 43 & 50\end{array}\right]$
(b) $A C=\left[\begin{array}{rr}4 & -7 \\ 8 & -15\end{array}\right]$
(c) $(A+B) C=\left[\begin{array}{ll}16 & -30 \\ 24 & -46\end{array}\right]$
(d) $A C+B C=\left[\begin{array}{ll}16 & -30 \\ 24 & -46\end{array}\right]$
(e) $\left[\begin{array}{rr}2 & 7 \\ 0 & 17\end{array}\right]$
2. $A B=\left[\begin{array}{rr}\cos \theta \cos \phi-\sin \theta \sin \phi & \cos \theta \sin \phi+\sin \theta \cos \phi \\ -\sin \theta \cos \phi-\cos \theta \sin \phi & -\sin \theta \sin \phi+\cos \theta \cos \phi\end{array}\right]$

$$
=\left[\begin{array}{rr}
\cos (\theta+\phi) & \sin (\theta+\phi) \\
-\sin (\theta+\phi) & \cos (\theta+\phi)
\end{array}\right]
$$

which clearly represents a rotation through angle $\theta+\phi . B A$ gives the same result.
3. $A B=\left[\begin{array}{rr}15 & 26 \\ -6 & -12 \\ 12 & 24\end{array}\right], \quad B C=\left[\begin{array}{rr}8 & 10 \\ 0 & 3 \\ 16 & 17\end{array}\right]$
4. $A(B C)=(A B) C=\left[\begin{array}{r}-8 \\ 8\end{array}\right]$

## Determinants

## Introduction

Among other uses, determinants allow us to determine whether a system of linear equations has a unique solution or not. The evaluation of a determinant is a key skill in engineering mathematics and this Section concentrates on the evaluation of small size determinants. For evaluating larger sizes we can often use some properties of determinants to help simplify the task.

## Prerequisites

- know what a matrix is

Before starting this Section you should ...

- evaluate a $2 \times 2$ determinant


## Learning Outcomes

On completion you should be able to ...

- use the method of expansion along the top row to evaluate a determinant
- use the properties of determinants to aid their evaluation


## 1. Determinant of a $2 \times 2$ matrix

The determinant of the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is denoted by $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$ (note the change from square brackets to vertical lines) and is defined to be the number $a d-b c$. That is:

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

We can use the notation $\operatorname{det}(A)$ or $|A|$ or $\Delta$ to denote the determinant of $A$.


Find the determinants of the matrices

$$
\begin{array}{lll}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], & B=\left[\begin{array}{rr}
4 & -1 \\
-2 & -3
\end{array}\right], & C=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \quad D=\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right], \\
E=\left[\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right], & F=\left[\begin{array}{rr}
-1 & 0 \\
0 & -3
\end{array}\right], & G=\left[\begin{array}{rr}
1 & 2 \\
-2 & -4
\end{array}\right] .
\end{array}
$$

Your solution

## Answer

$|A|=1 \times 4-2 \times 3=-2$
$|B|=4 \times(-3)-(-1) \times(-2)=-12-2=-14$
$|C|=0 \quad|D|=3$
$|E|=8 \quad|F|=3 \quad|G|=-4+4=0$

## 2. Laplace expansion along the top row

This is a technique which can be used to evaluate determinants of any order. In principle, this method can use any row or any column as its starting point. We quote one example: using the top row.
Consider $\Delta=\left|\begin{array}{lll}4 & 1 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right|$.
First we introduce the idea of a minor. Each element in this array of numbers has an associated minor formed by removing the column and row in which the element lies and taking the determinant of the remainder. For example consider element $a_{23}=3$. We strike out the second row and the third column:


$$
\text { to leave } \quad\left|\begin{array}{ll}
4 & 1 \\
3 & 1
\end{array}\right|=4-3=1
$$

For the element $a_{31}=3$ we strike out the third row and first column:

$$
\begin{array}{lll}
4 & 1 & 1 \\
1 & 2 & 3 \\
\$ & 1 & 2
\end{array} \quad \text { to leave } \quad\left|\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right|=3-2=1
$$

## Your solution

## Answer

$$
\left.\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array} \right\rvert\,=8-3=5
$$

Next we introduce the idea of a cofactor. This is a minor with a sign attached. The appropriate sign comes from the pattern of signs appropriate to a $3 \times 3$ array:

$$
\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}
$$

(i.e. positive signs on the leading diagonal and the signs 'alternate' everywhere else.)

Each element has a cofactor associated with it. The cofactor of element $a_{11}$ is denoted by $A_{11}$, that of $a_{23}$ by $A_{23}$ and so on.

To obtain the cofactor of an element of a $3 \times 3$ matrix we simply multiply the minor of that element by the corresponding sign from the $3 \times 3$ array of signs.
Hence the cofactor corresponding to $a_{23}$ is

$$
A_{23}=-\left|\begin{array}{ll}
4 & 1 \\
3 & 1
\end{array}\right|=-1
$$

and the cofactor corresponding to $a_{31}$ is $A_{31}=+\left|\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right|=1$.

What is the cofactor of the element $a_{22}$ ?

## Your solution

## Answer

The sign in the position of $a_{22}$ in the array of signs is +
Hence, since the minor of this element is +5 the cofactor is $A_{22}=+5$.
Cofactors are important as it can be shown that the value of the determinant of a $3 \times 3$ matrix can be found from the formula

$$
\Delta=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13} .
$$

In words "the determinant of a $3 \times 3$ matrix is obtained by multiplying each element of the first row by its corresponding cofactor and then adding the three together". (In fact this rule can be extended to apply to any row or any column and to any order square matrix.)

## Key Point 7

## Evaluating General Determinants

If $A$ is an $n \times n$ square matrix then : $\quad \operatorname{det}(A)=\sum_{j=1}^{n} a_{i j} A_{i j}$
In words:
The determinant of a square matrix is obtained by multiplying each element of row $i$ by its corresponding cofactor and then adding these products together.

In the case of $\Delta=\left|\begin{array}{lll}4 & 1 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right|$ we have $a_{11}=4, a_{12}=1, a_{13}=1$,

$$
\begin{aligned}
& A_{11}=+\left|\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right|=4-3=1 \\
& A_{12}=-\left|\begin{array}{ll}
1 & 3 \\
3 & 2
\end{array}\right|=-(2-9)=7
\end{aligned}
$$

$$
A_{13}=+\left|\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right|=1-6=-5
$$

Hence $\quad \Delta=4 \times 1+1 \times 7+1 \times-5=6$.
Alternatively, choosing to expand along the second row:

$$
\begin{aligned}
\Delta & =a_{21} A_{21}+a_{22} A_{22}+a_{23} A_{23} \\
& =1\left(-\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right|\right)+2\left(\left|\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right|\right)+3\left(-\left|\begin{array}{ll}
4 & 1 \\
3 & 1
\end{array}\right|\right)=6 \quad \text { as before. }
\end{aligned}
$$

## Your solution

$$
\begin{aligned}
& \begin{array}{l}
\text { Answer } \\
a_{11}=1,
\end{array} a_{12}=-1, \quad a_{13}=3 \\
& A_{11}=+\left|\begin{array}{rr}
2 & 6 \\
1 & 5
\end{array}\right|=10-6=4 \\
& A_{12}=-\left|\begin{array}{rr}
0 & 6 \\
-2 & 5
\end{array}\right|=-(0+12)=-12 \\
& A_{13}=+\left|\begin{array}{rr}
0 & 2 \\
-2 & 1
\end{array}\right|=2+2=4 .
\end{aligned}
$$

Hence $\Delta=1 \times 4+(-1) \times(-12)+3 \times 4=4+12+12=28$, as before.

## 3. Properties of determinants

Often, especially with determinants of large order, we can simplify the evaluation rules. In this Section we quote some useful properties of determinants in general.

1. If two rows (or two columns) of a determinant are interchanged then the value of the determinant is multiplied by $(-1)$.

For example $\left|\begin{array}{ll}4 & 3 \\ 1 & 2\end{array}\right|=8-3=5$ but (interchanging columns) $\left|\begin{array}{ll}3 & 4 \\ 2 & 1\end{array}\right|=3-8=-5$ and (interchanging rows) $\left|\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right|=3-8=-5$.
2. The determinant of a matrix $A$ and the determinant of its transpose $A^{T}$ are equal.

$$
\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|=\left|\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right|=4-6=-2
$$

3. If two rows (or two columns) of a matrix $A$ are equal then it has zero determinant.

For example, the following determinant has two identical rows:

$$
\begin{aligned}
\left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right| & =1 \times\left(\left|\begin{array}{ll}
2 & 3 \\
5 & 6
\end{array}\right|\right)+2 \times\left(-\left|\begin{array}{ll}
1 & 3 \\
4 & 6
\end{array}\right|\right)+3 \times\left(\left|\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right|\right) \\
& =-3+2 \times(6)+3 \times(-3)=0
\end{aligned}
$$

4. If the elements of one row (or one column) of a determinant are multiplied by $k$, then the resulting determinant is $k$ times the given determinant:

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 8 & 6 \\
7 & 8 & 9
\end{array}\right|=2\left|\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 3 \\
7 & 8 & 9
\end{array}\right|
$$

Note that if one row (or column) of a determinant is a multiple of another row (or column) then the value of the determinant is zero. (This follows from properties 3 and 4.)

For example:

$$
\begin{aligned}
\left|\begin{array}{rrr}
2 & 4 & -1 \\
4 & 2 & 1 \\
-4 & -8 & 2
\end{array}\right| & =2 \times\left|\begin{array}{rr}
2 & 1 \\
-8 & 2
\end{array}\right|+4 \times\left(-\left|\begin{array}{rr}
4 & 1 \\
-4 & 2
\end{array}\right|\right)-1 \times\left|\begin{array}{rr}
4 & 2 \\
-4 & -8
\end{array}\right| \\
& =2(12)+4(-12)-(-24)=0
\end{aligned}
$$

This is predictable as the 3rd row is $(-2)$ times the first row.
5. If we add (or subtract) a multiple of one row (or column) to another, the value of the determinant is unchanged.

Given $\left|\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right|$, add $(2 \times$ row 1$)$ to (row 2$)$ gives

$$
\left|\begin{array}{cc}
1 & 2 \\
4+2 \times 1 & 5+2 \times 2
\end{array}\right|=\left|\begin{array}{ll}
1 & 2 \\
6 & 9
\end{array}\right|=9-12=-3=\left|\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right|
$$

6. The determinant of a lower triangular matrix, an upper triangular matrix or a diagonal matrix is the product of the elements on the leading diagonal.
As an example, it is easily confirmed that each of the following determinants has the same value $1 \times 4 \times 6=24$.

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}\right|, \quad\left|\begin{array}{lll}
1 & 0 & 0 \\
2 & 4 & 0 \\
3 & 5 & 6
\end{array}\right|, \quad\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 6
\end{array}\right|
$$

This task is in four parts. Consider

$$
\Delta=\left|\begin{array}{rrrr}
1 & 4 & 8 & 2 \\
2 & -1 & 1 & -3 \\
0 & 2 & 4 & 2 \\
0 & 3 & 6 & 3
\end{array}\right|
$$

(a) Use property 2 to find another matrix whose determinant is equal to $\Delta$ :

## Your solution

## Answer

$\Delta=\left|\begin{array}{rrrr}1 & 2 & 0 & 0 \\ 4 & -1 & 2 & 3 \\ 8 & 1 & 4 & 6 \\ 2 & -3 & 2 & 3\end{array}\right|$, by transposing the matrix.
(b) Now expand along the top row to express $\Delta$ as the sum of two products, each of a number and a $3 \times 3$ determinant:

## Your solution

## Answer

$$
\Delta=1 \times\left|\begin{array}{rrr}
-1 & 2 & 3 \\
1 & 4 & 6 \\
-3 & 2 & 3
\end{array}\right|-2 \times\left|\begin{array}{lll}
4 & 2 & 3 \\
8 & 4 & 6 \\
2 & 2 & 3
\end{array}\right|
$$

(c) Use the statement after property 4 to show that the second of the $3 \times 3$ determinants is zero:

## Your solution

## Answer

In the second $3 \times 3$ determinant, row $2=2 \times$ row 1 hence the determinant has value zero.
(d) Use the statement after property 4 to evaluate the first determinant:

## Your solution

## Answer

In the first $3 \times 3$ determinant column $3=\frac{3}{2} \times$ column 2 . Hence this determinant is also zero. Therefore $\Delta=0$.

## Exercises

1. Use Laplace expansion along the 1st row to determine

$$
\left|\begin{array}{rrr}
3 & 1 & -4 \\
6 & 9 & -2 \\
-1 & 2 & 1
\end{array}\right|
$$

Show that the same value is obtained if you choose any other row or column for your expansion.
2. Using any of the properties of determinants to minimise the arithmetic, evaluate
(a) $\left|\begin{array}{lll}12 & 27 & 12 \\ 28 & 18 & 24 \\ 70 & 15 & 40\end{array}\right|$
(b) $\left|\begin{array}{llll}2 & 4 & 6 & 4 \\ 0 & 4 & 6 & 9 \\ 2 & 1 & 4 & 0 \\ 1 & 2 & 3 & 2\end{array}\right|$
3. Find the cofactors of $x, y, z$ in the determinant

$$
\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 4 \\
x & y & z
\end{array}\right|
$$

4. Prove that, no matter what the values of $x, y, z$, are

$$
\left|\begin{array}{ccc}
y+z & z+x & x+y \\
x & y & z \\
1 & 1 & 1
\end{array}\right|=0
$$

## Answers

1. $3\left|\begin{array}{rr}9 & -2 \\ 2 & 1\end{array}\right|-1\left|\begin{array}{rr}6 & -2 \\ -1 & 1\end{array}\right|-4\left|\begin{array}{rr}6 & 9 \\ -1 & 2\end{array}\right|=3(9+4)-1(6-2)-4(12+9)=-49$
2. (a) Take out common factors in rows and columns
$720\left|\begin{array}{lll}2 & 3 & 1 \\ 7 & 3 & 3 \\ 7 & 1 & 2\end{array}\right|=720\left|\begin{array}{rrr}0 & 0 & 1 \\ 1 & -6 & 3 \\ 3 & -5 & 2\end{array}\right|$ using $\left(-2 C_{3}+C_{1}\right)$ then $\left(-3 C_{3}+C_{2}\right)$.
The value of the determinant (expand along top row) is then easily found as $720 \times 13=9360$.
(b) Zero since (row 1 ) is $2 \times$ (row 4 ).
3. Cofactors of $x, y, z$ are $1,-2,1$ respectively.

## The Inverse of a Matrix

## Introduction

In number arithmetic every number $a(\neq 0)$ has a reciprocal $b$ written as $a^{-1}$ or $\frac{1}{a}$ such that $b a=a b=1$. Some, but not all, square matrices have inverses. If a square matrix $A$ has an inverse, $A^{-1}$, then

$$
A A^{-1}=A^{-1} A=I .
$$

We develop a rule for finding the inverse of a $2 \times 2$ matrix (where it exists) and we look at two methods of finding the inverse of a $3 \times 3$ matrix (where it exists).

Non-square matrices do not possess inverses so this Section only refers to square matrices.


Before starting this Section you should ...

- be familiar with the algebra of matrices
- be able to calculate a determinant
- know what a cofactor is
- state the condition for the existence of an inverse matrix


## Learning Outcomes

On completion you should be able to ...

- use the formula for finding the inverse of a $2 \times 2$ matrix
- find the inverse of a $3 \times 3$ matrix using row operations and using the determinant method


## 1. The inverse of a square matrix

We know that any non-zero number $k$ has an inverse; for example 2 has an inverse $\frac{1}{2}$ or $2^{-1}$. The inverse of the number $k$ is usually written $\frac{1}{k}$ or, more formally, by $k^{-1}$. This numerical inverse has the property that

$$
k \times k^{-1}=k^{-1} \times k=1
$$

We now show that an inverse of a matrix can, in certain circumstances, also be defined.
Given an $n \times n$ square matrix $A$, then an $n \times n$ square matrix $B$ is said to be the inverse matrix of $A$ if

$$
A B=B A=I
$$

where $I$ is, as usual, the identity matrix (or unit matrix) of the appropriate size.

## Example 6

Show that the inverse matrix of $A=\left[\begin{array}{ll}-1 & 1 \\ -2 & 0\end{array}\right]$ is $B=\left[\begin{array}{ll}0 & -\frac{1}{2} \\ 1 & -\frac{1}{2}\end{array}\right]$

## Solution

All we need do is to check that $A B=B A=I$.

$$
A B=\left[\begin{array}{ll}
-1 & 1 \\
-2 & 0
\end{array}\right] \times \frac{1}{2}\left[\begin{array}{ll}
0 & -1 \\
2 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}
-1 & 1 \\
-2 & 0
\end{array}\right] \times\left[\begin{array}{ll}
0 & -1 \\
2 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The reader should check that $B A=I$ also.
We make three important remarks:

- Non-square matrices do not have inverses.
- The inverse of $A$ is usually written $A^{-1}$.
- Not all square matrices have inverses.


Consider $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right]$, and let $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a possible inverse of $A$.
(a) Find $A B$ and $B A$ :

## Your solution

$A B=$ $B A=$

Answer
$A B=\left[\begin{array}{rr}a & b \\ 2 a & 2 b\end{array}\right], \quad B A=\left[\begin{array}{ll}a+2 b & 0 \\ c+2 d & 0\end{array}\right]$
(b) Equate the elements of $A B$ to those of $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and solve the resulting equations:

## Your solution

## Answer

$a=1, \quad b=0, \quad 2 a=0, \quad 2 b=1$. Hence $a=1, \quad b=0, \quad a=0, \quad b=\frac{1}{2}$. This is not possible!
Hence, we have a contradiction. The matrix $A$ therefore has no inverse and is said to be a singular matrix. A matrix which has an inverse is said to be non-singular.

- If a matrix has an inverse then that inverse is unique.

Suppose $B$ and $C$ are both inverses of $A$. Then, by definition of the inverse,
$A B=B A=I$ and $A C=C A=I$
Consider the two ways of forming the product $C A B$

1. $C A B=C(A B)=C I=C$
2. $C A B=(C A) B=I B=B$.

Hence $B=C$ and the inverse is unique.

- There is no such operation as division in matrix algebra.

We do not write $\frac{B}{A}$ but rather
$A^{-1} B$ or $B A^{-1}$,
depending on the order required.

- Assuming that the square matrix $A$ has an inverse $A^{-1}$ then the solution of the system of equations $A X=B$ is found by pre-multiplying both sides by $A^{-1}$.
pre-multiplying by $A^{-1}$ :

$$
A^{-1}(A X)=A^{-1} B
$$

using associativity: $\left.A^{-1} A\right) X=A^{-1} B$
using $A^{-1} A=I$ :
$I X=A^{-1} B$,
using property of $I$ :
$X=A^{-1} B \quad$ which is the solution we seek.

## 2. The inverse of a $2 \times 2$ matrix

In this subsection we show how the inverse of a $2 \times 2$ matrix can be obtained (if it exists).

Form the matrix products $A B$ and $B A$ where

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { and } B=\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

## Your solution

$A B=$
$B A=$

## Answer

$$
\begin{aligned}
& A B=\left[\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right]=(a d-b c)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=(a d-b c) I \\
& B A=\left[\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right]=(a d-b c) I
\end{aligned}
$$

You will see that had we chosen $C=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$ instead of $B$ then both products $A C$ and $C A$ will be equal to $I$. This requires $a d-b c \neq 0$. Hence this matrix $C$ is the inverse of $A$. However, note, that if $a d-b c=0$ then $A$ has no inverse. (Note that for the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right]$, which occurred in the last task, $a d-b c=1 \times 0-0 \times 2=0$ confirming, as we found, that $A$ has no inverse.)

## Key Point 8

## The Inverse of a $2 \times 2$ Matrix

If $a d-b c \neq 0$ then the $2 \times 2$ matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ has a (unique) inverse given by

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Note that $a d-b c=|A|$, the determinant of the matrix $A$.
In words: To find the inverse of a $2 \times 2$ matrix $A$ we interchange the diagonal elements, change the sign of the other two elements, and then divide by the determinant of $A$.

Which of the following matrices has an inverse?

$$
A=\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right], \quad B=\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right], \quad C=\left[\begin{array}{rr}
1 & -1 \\
-2 & 2
\end{array}\right], \quad D=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

## Your solution

## Answer

$$
|A|=1 \times 3-0 \times 2=3 ; \quad|B|=1+1=2 ; \quad|C|=2-2=0 ; \quad|D|=1-0=1 .
$$

Therefore, $A, B$ and $D$ each has an inverse. $C$ does not because it has a zero determinant.

## Task

Find the inverses of the matrices $A, B$ and $D$ in the previous Task.

Use Key Point 8:

## Your solution

$A^{-1}=$
$B^{-1}=$
$C^{-1}=$

## Answer

$$
A^{-1}=\frac{1}{3}\left[\begin{array}{rr}
3 & 0 \\
-2 & 1
\end{array}\right], B^{-1}=\frac{1}{2}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right], D^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=D
$$

It can be shown that the matrix $A=\left[\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ represents an anti-clockwise rotation through an angle $\theta$ in an $x y$-plane about the origin. The matrix $B$ represents a rotation clockwise through an angle $\theta$. It is given therefore by

$$
B=\left[\begin{array}{rr}
\cos (-\theta) & \sin (-\theta) \\
-\sin (-\theta) & \cos (-\theta)
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

## Your solution

$A B=$
$B A=$

## Answer

$$
\begin{aligned}
A B & =\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos ^{2} \theta+\sin ^{2} \theta & -\cos \theta \sin \theta+\sin \theta \cos \theta \\
-\sin \theta \cos \theta+\cos \theta \sin \theta & \sin ^{2} \theta+\cos ^{2} \theta
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
\end{aligned}
$$

Similarly, $B A=I$
Effectively: a rotation through an angle $\theta$ followed by a rotation through angle $-\theta$ is equivalent to zero rotation.

## 3. The inverse of a $3 \times 3$ matrix - Gauss elimination method

It is true, in general, that if the determinant of a matrix is zero then that matrix has no inverse. If the determinant is non-zero then the matrix has a (unique) inverse. In this Section and the next we look at two ways of finding the inverse of a $3 \times 3$ matrix; larger matrices can be inverted by the same methods - the process is more tedious and takes longer. The $2 \times 2$ case could be handled similarly but as we have seen we have a simple formula to use.

The method we now describe for finding the inverse of a matrix has many similarities to a technique used to obtain solutions of simultaneous equations. This method involves operating on the rows of a matrix in order to reduce it to a unit matrix.
The row operations we shall use are
(i) interchanging two rows
(ii) multiplying a row by a constant factor
(iii) adding a multiple of one row to another.

Note that in (ii) and (iii) the multiple could be negative or fractional, or both.
The Gauss elimination method is outlined in the following Key Point:

## Key Point 9 <br> Matrix Inverse - Gauss Elimination Method

We use the result, quoted without proof, that:
if a sequence of row operations applied to a square matrix $A$ reduces it to the identity matrix $I$ of the same size then the same sequence of operations applied to $I$ reduces it to $A^{-1}$.

Three points to note:

- If it is impossible to reduce $A$ to $I$ then $A^{-1}$ does not exist. This will become evident by the appearance of a row of zeros.
- There is no unique procedure for reducing $A$ to $I$ and it is experience which leads to selection of the optimum route.
- It is more efficient to do the two reductions, $A$ to $I$ and $I$ to $A^{-1}$, simultaneously.

Suppose we wish to find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
1 & 3 & 3 \\
1 & 4 & 3 \\
2 & 7 & 7
\end{array}\right]
$$

We first place $A$ and $I$ adjacent to each other

$$
\left[\begin{array}{lll}
1 & 3 & 3 \\
1 & 4 & 3 \\
2 & 7 & 7
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

## Phase 1

We now proceed by changing the columns of $A$ left to right to reduce $A$ to the form $\left[\begin{array}{ccc}1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1\end{array}\right]$ where $*$ can be any number. This form is called upper triangular.
First we subtract row 1 from row 2 and twice row 1 from row 3. 'Row' refers to both matrices.

$$
\left[\begin{array}{lll}
1 & 3 & 3 \\
1 & 4 & 3 \\
2 & 7 & 7
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \begin{gathered}
\\
R 2-R 1 \\
R 3-2 R 1
\end{gathered} \Rightarrow\left[\begin{array}{lll}
1 & 3 & 3 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

Now we subtract row 2 from row 3

$$
\left[\begin{array}{lll}
1 & 3 & 3 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right] \quad R 3-R 2\left[\begin{array}{lll}
1 & 3 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right]
$$

## Phase 2

This consists of continuing the row operations to reduce the elements above the leading diagonal to zero.
We proceed right to left. We subtract 3 times row 3 from row 1 (the elements in row 2 column 3 is already zero.)

$$
\left[\begin{array}{lll}
1 & 3 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \quad R 1-3 R 3 \quad \Rightarrow\left[\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
4 & 3 & -3 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right]
$$

Finally we subtract 3 times row 2 from row 1 .

$$
\left[\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
4 & 3 & -3 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right] \quad R 1-3 R 2 .\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
7 & 0 & -3 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right]
$$

Then we have $A^{-1}=\left[\begin{array}{rrr}7 & 0 & -3 \\ -1 & 1 & 0 \\ -1 & -1 & 1\end{array}\right]$
(This can be verified by showing that $A A^{-1}=I$ or $A^{-1} A=I$.)


Use the Gauss elimination method to obtain $A^{-1}$.

First interchange rows 1 and 2, then carry out the operation (row 3 ) $+\frac{1}{2}$ (row 1 ):

## Your solution

## Answer

$$
\left.\begin{array}{l}
{\left[\begin{array}{rrr}
0 & 1 & 1 \\
2 & 3 & -1 \\
-1 & 2 & 1
\end{array}\right]}
\end{array}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{2} \leftrightarrow R 2 \Rightarrow\left[\begin{array}{rrr}
2 & 3 & -1 \\
0 & 1 & 1 \\
-1 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right)
$$

Now carry out the operation (row 3) $-\frac{7}{2}$ (row 2 ) followed by (row 1 ) $-\frac{1}{3}$ (row 3 )
and (row 2 ) $+\frac{1}{3}($ row 3 ):

## Your solution

## Answer

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
2 & 3 & -1 \\
0 & 1 & 1 \\
0 & \frac{7}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & \frac{1}{2} & 1
\end{array}\right] \underset{-\frac{7}{2} R 2}{ } \Rightarrow\left[\begin{array}{rrr}
2 & 3 & -1 \\
0 & 1 & 1 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
-\frac{7}{2} & \frac{1}{2} & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrr}
2 & 3 & -1 \\
0 & 1 & 1 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
-\frac{7}{2} & \frac{1}{2} & 1
\end{array}\right] \begin{array}{l}
R 1-\frac{1}{3} R 3 \\
R 2+\frac{1}{3} R 3
\end{array} \Rightarrow\left[\begin{array}{rrr}
2 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{rrr}
+\frac{7}{6} & +\frac{5}{6} & -\frac{1}{3} \\
-\frac{1}{6} & \frac{1}{6} & \frac{1}{3} \\
-\frac{7}{2} & \frac{1}{2} & 1
\end{array}\right]}
\end{aligned}
$$

Next, subtract 3 times row 2 from row 1 , then, divide row 1 by 2 and row 3 by ( -3 ).
Finally identify $A^{-1}$ :

Answer

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
2 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{rrr}
\frac{7}{6} & \frac{5}{6} & -\frac{1}{3} \\
-\frac{1}{6} & \frac{1}{6} & \frac{1}{3} \\
-\frac{7}{2} & \frac{1}{2} & 1
\end{array}\right] \begin{array}{r}
R 1-3 R 2
\end{array} \Rightarrow\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{rrr}
\frac{10}{6} & \frac{2}{6} & -\frac{4}{3} \\
-\frac{1}{6} & \frac{1}{6} & \frac{1}{3} \\
-\frac{7}{2} & \frac{1}{2} & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{rrr}
\frac{10}{6} & \frac{2}{6} & -\frac{4}{3} \\
-\frac{1}{6} & \frac{1}{6} & \frac{1}{3} \\
-\frac{7}{2} & \frac{1}{2} & 1
\end{array}\right] \begin{array}{c}
R 1 \div 2 \\
R 3 \div(-3)
\end{array} \Rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
\frac{5}{6} & \frac{1}{6} & -\frac{2}{3} \\
-\frac{1}{6} & \frac{1}{6} & \frac{1}{3} \\
\frac{7}{6} & -\frac{1}{6} & -\frac{1}{3}
\end{array}\right]} \\
& \text { Hence } A^{-1}=\left[\begin{array}{rrr}
\frac{5}{6} & \frac{1}{6} & -\frac{2}{3} \\
-\frac{1}{6} & \frac{1}{6} & \frac{1}{3} \\
\frac{7}{6} & -\frac{1}{6} & -\frac{1}{3}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{rrr}
5 & 1 & -4 \\
-1 & 1 & 2 \\
7 & -1 & -2
\end{array}\right]
\end{aligned}
$$

## 4. The inverse of a $3 \times 3$ matrix - determinant method

This method which employs determinants, is of importance from a theoretical perspective. The numerical computations involved are too heavy for matrices of higher order than $3 \times 3$ and in such cases the Gauss elimination approach is prefered.

To obtain $A^{-1}$ using the determinant approach the steps in the following keypoint are followed:

```
Key Point 10
Matrix Inverse - the Determinant Method
Given a square matrix \(A\) :
- Find \(|A|\). If \(|A|=0\) then \(A^{-1}\) does not exist. If \(|A| \neq 0\) we can proceed to find the inverse matrix, as follows.
- Replace each element of \(A\) by its cofactor (see Section 7.3).
- Transpose the result to form the adjoint matrix, denoted by \(\operatorname{adj}(A)\)
- Then calculate \(A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)\).
```



Find the inverse of $A=\left[\begin{array}{rrr}0 & 1 & 1 \\ 2 & 3 & -1 \\ -1 & 2 & 1\end{array}\right]$. This will require five stages.
(a) First find $|A|$ :

## Your solution

## Answer

$|A|=0 \times 5+1 \times(-1)+1 \times 7=6$
(b) Now replace each element of $A$ by its minor:

## Your solution

## Answer

$$
\left[\left.\begin{array}{l}
\left|\begin{array}{rr}
3 & -1 \\
2 & 1
\end{array}\right|\left|\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right|\left|\begin{array}{rr}
2 & 3 \\
-1 & 2
\end{array}\right| \\
\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right|
\end{array}\left|\begin{array}{rr}
0 & 1 \\
-1 & 1
\end{array}\right|\left|\begin{array}{rr}
0 & 1 \\
-1 & 2
\end{array}\right| \right\rvert\,=\left[\begin{array}{rrr}
5 & 1 & 7 \\
-1 & 1 & 1 \\
-4 & -2 & -2
\end{array}\right]\right.
$$

(c) Now attach the signs from the array

$$
\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}
$$

(so that where a + sign is met no action is taken and where a - sign is met the sign is changed) to obtain the matrix of cofactors:

Your solution

## Answer

$\left[\begin{array}{rrr}5 & -1 & 7 \\ 1 & 1 & -1 \\ -4 & 2 & -2\end{array}\right]$
(d) Then transpose the result to obtain the adjoint matrix:

## Your solution

## Answer

Transposing, $\operatorname{adj}(A)=\left[\begin{array}{rrr}5 & 1 & -4 \\ -1 & 1 & 2 \\ 7 & -1 & -2\end{array}\right]$
(e) Finally obtain $A^{-1}$ :

## Your solution

## Answer

$A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=\frac{1}{6}\left[\begin{array}{rrr}5 & 1 & -4 \\ -1 & 1 & 2 \\ 7 & -1 & -2\end{array}\right]$ as before using Gauss elimination.

## Exercises

1. Find the inverses of the following matrices
(a) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(b) $\left[\begin{array}{rr}-1 & 0 \\ 0 & 4\end{array}\right]$
(c) $\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]$
2. Use the determinant method and also the Gauss elimination method to find the inverse of the following matrices
(a) $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 1 & 0 & 0 \\ 4 & 1 & 2\end{array}\right]$
(b) $B=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$

## Answers

1. (a) $-\frac{1}{2}\left[\begin{array}{rr}4 & -2 \\ -3 & 1\end{array}\right] \quad$ (b) $\left[\begin{array}{rr}-1 & 0 \\ 0 & \frac{1}{4}\end{array}\right] \quad$ (c) $\frac{1}{2}\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$
2. 

(a) $A^{-1}=-\frac{1}{2}\left[\begin{array}{rrr}0 & -2 & 1 \\ -2 & 4 & 2 \\ 0 & 0 & -1\end{array}\right]^{T}=-\frac{1}{2}\left[\begin{array}{rrr}0 & -2 & 0 \\ -2 & 4 & 0 \\ 1 & 2 & -1\end{array}\right]$
(b) $B^{-1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]^{T}=\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$

