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Learning 

In this Workbook you will learn about matrices. In the first instance you will learn about the 
algebra of matrices: how they can be added, subtracted and multiplied. You will learn
about a characteristic quantity associated with square matrices - the determinant. Using
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Introduction to
Matrices

�
�

�
�7.1

Introduction
When we wish to solve large systems of simultaneous linear equations, which arise for example in the
problem of finding the forces on members of a large framed structure, we can isolate the coefficients
of the variables as a block of numbers called a matrix. There are many other applications matrices.
In this Section we develop the terminology and basic properties of a matrix.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be familiar with the rules of number algebra

'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• express a system of linear equations in matrix
form

• recognise and use the basic terminology
associated with matrices

• carry out addition and subtraction with two
given matrices or state that the operation is
not possible
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1. Applications of matrices
The solution of simultaneous linear equations is a task frequently occurring in engineering. In electrical
engineering the analysis of circuits provides a ready example.
However the simultaneous equations arise, we need to study two things:

(a) how we can conveniently represent large systems of linear equations

(b) how we might find the solution of such equations.

We shall discover that knowledge of the theory of matrices is an essential mathematical tool in this
area.

Representing simultaneous linear equations
Suppose that we wish to solve the following three equations in three unknowns x1, x2 and x3:

3x1 + 2x2 − x3 = 3

x1 − x2 + x3 = 4

2x1 + 3x2 + 4x3 = 5

We can isolate three facets of this system: the coefficients of x1, x2, x3; the unknowns x1, x2, x3;
and the numbers on the right-hand sides.
Notice that in the system

3x + 2y − z = 3

x− y + z = 4

2x + 3y + 4z = 5

the only difference from the first system is the names given to the unknowns. It can be checked that
the first system has the solution x1 = 2, x2 = −1, x3 = 1. The second system therefore has the
solution x = 2, y = −1, z = 1.
We can isolate the three facets of the first system by using arrays of numbers and of unknowns: 3 2 −1

1 −1 1
2 3 4

 x1

x2

x3

 =

 3
4
5


Even more conveniently we represent the arrays with letters (usually capital letters)

AX = B

Here, to be explicit, we write

A =

 3 2 −1
1 −1 1
2 3 4

 X =

 x1

x2

x3

 B =

 3
4
5


Here A is called the matrix of coefficients, X is called the matrix of unknowns and B is called
the matrix of constants.
If we now append to A the column of right-hand sides we obtain the augmented matrix for the
system:
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 3 2 −1
1 −1 1
2 3 4

∣∣∣∣∣∣
3
4
5


The order of the entries, or elements, is crucial. For example, all the entries in the second row relate
to the second equation, the entries in column 1 are the coefficients of the unknown x1, and those in
the last column are the constants on the right-hand sides of the equations.
In particular, the entry in row 2 column 3 is the coefficient of x3 in equation 2.

Representing networks
Shortest-distance problems are important in communications study. Figure 1 illustrates schematically
a system of four towns connected by a set of roads.

a b

c d

Figure 1

The system can be represented by the matrix

a b c d

a
b
c
d


0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0


The row refers to the town from which the road starts and the column refers to the town where the
road ends. An entry of 1 indicates that two towns are directly connected by a road (for example b
and d) and an entry of zero indicates that there is no direct road (for example a and c). Of course,
if there is a road from b to d (say) it is also a road from d to b.

In this Section we shall develop some basic ideas about matrices.

2. Definitions
An array of numbers, rectangular in shape, is called a matrix. The first matrix below has 3 rows
and 2 columns and is said to be a ‘3 by 2’ matrix (written 3 × 2). The second matrix is a ‘2 by 4’
matrix (written 2× 4). 1 4

−2 3
2 1

 [
1 2 3 4
5 6 7 9

]
The general 3× 3 matrix can be written

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33
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where aij denotes the element in row i, column j.
For example in the matrix:

A =

 0 −1 −3
0 6 −12
5 7 123


a11 = 0, a12 = −1, a13 = −3, . . . a22 = 6, . . . a32 = 7, a33 = 123

Key Point 1

The General Matrix

A general m× n matrix A has m rows and n columns.

The entries in the matrix A are called the elements of A.

In matrix A the element in row i and column j is denoted by aij.

A matrix with only one column is called a column vector (or column matrix).

For example,

 x1

x2

x3

 and

 3
4
5

 are both 3× 1 column vectors.

A matrix with only one row is called a row vector (or row matrix). For example [2,−3, 8, 9] is a
1× 4 row vector. Often the entries in a row vector are separated by commas for clarity.

Square matrices
When the number of rows is the same as the number of columns, i.e. m = n, the matrix is said to
be square and of order n (or m).

• In an n×n square matrix A, the leading diagonal (or principal diagonal) is the ‘north-west
to south-east’ collection of elements a11, a22, . . . , ann. The sum of the elements in the leading
diagonal of A is called the trace of the matrix, denoted by tr(A).

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann

 tr(A) = a11 + a22 + · · ·+ ann

• A square matrix in which all the elements below the leading diagonal are zero is called an
upper triangular matrix, often denoted by U .
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U =


u11 u12 . . . . . . u1n

0 u22 . . . . . . u2n

0 0 . . .
...

...
0 0 . . . 0 unn

 uij = 0 when i > j

• A square matrix in which all the elements above the leading diagonal are zero is called a lower
triangular matrix, often denoted by L.

L =


l11 0 0 . . . 0
l21 l22 0 . . . 0
...

... . . . . . . 0

ln1 ln2
... . . . lnn

 lij = 0 when i < j

• A square matrix where all the non-zero elements are along the leading diagonal is called a
diagonal matrix, often denoted by D.

D =


d11 0 0 . . . 0
0 d22 0 . . . 0
0 0 . . . . . . 0
0 0 0 . . . dnn

 dij = 0 when i 6= j

Some examples of matrices and their classification

A =

[
1 2 3
4 5 6

]
is 2× 3. It is not square.

B =

[
1 2
3 4

]
is 2× 2. It is square.

Also, tr(A) does not exist, and tr(B) = 1 + 4 = 5.

C =

 1 2 3
0 −2 −5
0 0 1

 and D =

 4 0 3
0 −2 5
0 0 1

 are both 3× 3, square and upper triangular.

Also, tr(C) = 0 and tr(D) = 3.

E =

 1 0 0
2 −2 0
3 −5 1

 and F =

 −1 0 0
1 4 0
0 1 1

 are both 3× 3, square and lower triangular.

Also, tr(E) = 0 and tr(F ) = 4.

G =

 1 0 0
0 2 0
0 0 −3

 and H =

 4 0 0
0 2 0
0 0 0

 are both 3× 3, square and diagonal.

Also, tr(G) = 0 and tr(H) = 6.
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Task

Classify the following matrices (and, where possible, find the trace):

A =

 1 2
3 4
5 6

 B =

 1 2 3 4
5 6 7 8

−1 −3 −2 −4

 C =


1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16



Your solution

Answer
A is 3× 2, B is 3× 4, C is 4× 4 and square.

The trace is not defined for A or B. However, tr(C) = 34.

Task

Classify the following matrices:

A =

 1 1 1
1 1 1
1 1 1

 B =

 1 0 0
1 1 0
1 1 1

 C =

 1 1 1
0 1 1
0 0 1

 D =

 1 0 0
0 1 0
0 0 1



Your solution

Answer
A is 3 × 3 and square, B is 3 × 3 lower triangular, C is 3 × 3 upper triangular and D is 3 × 3
diagonal.

Equality of matrices
As we noted earlier, the terms in a matrix are called the elements of the matrix.

The elements of the matrix A =

[
1 2

−1 −4

]
are 1, 2,−1,−4

We say two matrices A, B are equal to each other only if A and B have the same number of rows
and the same number of columns and if each element of A is equal to the corresponding element of
B. When this is the case we write A = B. For example if the following two matrices are equal:

A =

[
1 α

−1 −β

]
B =

[
1 2

−1 −4

]
then we can conclude that α = 2 and β = 4.

HELM (2008):
Section 7.1: Introduction to Matrices

7



The unit matrix
The unit matrix or the identity matrix, denoted by In (or, often, simply I), is the diagonal matrix
of order n in which all diagonal elements are 1.

Hence, for example, I2 =

[
1 0
0 1

]
and I3 =

 1 0 0
0 1 0
0 0 1

.

The zero matrix
The zero matrix or null matrix is the matrix all of whose elements are zero. There is a zero matrix
for every size. For example the 2× 3 and 2× 2 cases are:[

0 0 0
0 0 0

]
,

[
0 0
0 0

]
.

Zero matrices, of whatever size, are denoted by 0.

The transpose of a matrix
The transpose of a matrix A is a matrix where the rows of A become the columns of the new matrix
and the columns of A become its rows. For example

A =

[
1 2 3
4 5 6

]
becomes

 1 4
2 5
3 6


The resulting matrix is called the transposed matrix of A and denoted AT . In the previous example
it is clear that AT is not equal to A since the matrices are of different sizes. If A is square n × n
then AT will also be n× n.

Example 1

Find the transpose of the matrix B =

 1 2 3
4 5 6
7 8 9



Solution

Interchanging rows with columns we find

BT =

 1 4 7
2 5 8
3 6 9


Both matrices are 3× 3 but B and BT are clearly different.

When the transpose of a matrix is equal to the original matrix i.e. AT = A, then we say that the
matrix A is symmetric. (This is because it has symmetry about the leading diagonal.)
In Example 1 B is not symmetric.
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Example 2

Show that the matrix C =

 1 −2 3
−2 4 −5

3 −5 6

 is symmetric.

Solution

Taking the transpose of C:

CT =

 1 −2 3
−2 4 −5

3 −5 6

.

Clearly CT = C and so C is a symmetric matrix. Notice how the leading diagonal acts as a “mirror”;
for example c12 = −2 and c21 = −2. In general cij = cji for a symmetric matrix.

Task

Find the transpose of each of the following matrices. Which are symmetric?

A =

[
1 2
3 4

]
, B =

[
1 1

−1 1

]
C =

[
1 1
1 0

]

D =

 1 2
4 5
7 8

 E =

[
1 0
0 1

]

Your solution

Answer

AT =

[
1 3
2 4

]
, BT =

[
1 −1
1 1

]
CT =

[
1 1
1 0

]
= C, symmetric

DT =

[
1 4 7
2 5 8

]
ET =

[
1 0
0 1

]
= E, symmetric
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3. Addition and subtraction of matrices
Under what circumstances can we add two matrices i.e. define A + B for given matrices A, B?

Consider

A =

[
1 2
3 4

]
and B =

[
5 6 9
7 8 10

]
There is no sensible way to define A + B in this case since A and B are different sizes.

However, if we consider matrices of the same size then addition can be defined in a very natural

way. Consider A =

[
1 2
3 4

]
and B =

[
5 6
7 8

]
. The ‘natural’ way to add A and B is to add

corresponding elements together:

A + B =

[
1 + 5 2 + 6
3 + 7 4 + 8

]
=

[
6 8

10 12

]
In general if A and B are both m × n matrices, with elements aij and bij respectively, then their
sum is a matrix C, also m× n, such that the elements of C are

cij = aij + bij i = 1, 2, . . . ,m j = 1, 2, . . . , n

In the above example

c11 = a11 + b11 = 1 + 5 = 6 c21 = a21 + b21 = 3 + 7 = 10 and so on.

Subtraction of matrices follows along similar lines:

D = A−B =

[
1− 5 2− 6
3− 7 4− 8

]
=

[
−4 −4
−4 −4

]

4. Multiplication of a matrix by a number
There is also a natural way of defining the product of a matrix with a number. Using the matrix A
above, we note that

A + A =

[
1 2
3 4

]
+

[
1 2
3 4

]
=

[
2 4
6 8

]
What we see is that 2A (which is the shorthand notation for A+A) is obtained by multiplying every
element of A by 2.

In general if A is an m× n matrix with typical element aij then the product of a number k with A
is written kA and has the corresponding elements kaij.

Hence, again using the matrix A above,

7A = 7

[
1 2
3 4

]
=

[
7 14

21 28

]
Similarly:

−3A =

[
−3 −6
−9 −12

]
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Task

For the following matrices find, where possible, A + B, A−B, B − A, 2A.

1. A =

[
1 2
3 4

]
B =

[
1 1
1 1

]

2. A =

 1 2 3
4 5 6
7 8 9

 B =

 1 1 1
−1 −1 −1

1 1 1



3. A =

 1 2 3
4 5 6
7 8 9

 B =

 1 2
3 4
5 6



Your solution

Answer

1. A + B =

[
2 3
4 5

]
A−B =

[
0 1
2 3

]
B − A =

[
0 −1

−2 −3

]
2A =

[
2 4
6 8

]

2. A + B =

 2 3 4
3 4 5
8 9 10

 A−B =

 0 1 2
5 6 7
6 7 8

 B − A =

 0 −1 −2
−5 −6 −7
−6 −7 −8



2A =

 2 4 6
8 10 12

14 16 18



3. None of A + B, A−B, B − A, are defined. 2A =

 2 4 6
8 10 12

14 16 18
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5. Some simple matrix properties
Using the definition of matrix addition described above we can easily verify the following properties
of matrix addition:

Key Point 2

Basic Properties of Matrices

Matrix addition is commutative: A + B = B + A

Matrix addition is associative: A + (B + C) = (A + B) + C

The distributive law holds: k(A + B) = k A + k B

These Key Point results follow from the fact that aij + bij = bij + aij etc.

We can also show that the transpose of a matrix satisfies the following simple properties:

Key Point 3

Properties of Transposed Matrices

(A + B)T = AT + BT

(A−B)T = AT −BT

(AT )T = A

Example 3
Show that (AT )T = A for the matrix A =

[
1 2 3
4 5 6

]

Solution

AT =

 1 4
2 5
3 6

 so that (AT )T =

[
1 2 3
4 5 6

]
= A

12 HELM (2008):
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Task

For the matrices A =

[
1 2
3 4

]
, B =

[
1 −1

−1 1

]
verify that

(i) 3(A + B) = 3A + 3B (ii) (A−B)T = AT −BT .

Your solution

Answer

(i) A + B =

[
2 1
2 5

]
; 3(A + B) =

[
6 3
6 15

]
; 3A =

[
3 6
9 12

]
;

3B =

[
3 −3

−3 3

]
; 3A + 3B =

[
6 3
6 15

]
.

(ii) A−B =

[
0 3
4 3

]
; (A−B)T =

[
0 4
3 3

]
; AT =

[
1 3
2 4

]
;

BT =

[
1 −1

−1 1

]
; AT −BT =

[
0 4
3 3

]
.
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Exercises

1. Find the coefficient matrix A of the system:

2x1 + 3x2 − x3 = 1

4x1 + 4x2 = 0

2x1 − x2 − x3 = 0

If B =

 1 2 3
4 5 6
0 0 1

 determine (3AT −B)T .

2. If A =

[
1 2 3
4 5 6

]
and B =

 −1 4
0 1
2 7

 verify that 3(AT −B) = (3A− 3BT )T .

Answers

1. A =

 2 3 −1
4 4 0
2 −1 −1

 , AT =

 2 4 2
3 4 −1
−1 0 −1

 , 3AT =

 6 12 6
9 12 −3
−3 0 −3


3AT −B =

 5 10 3
5 7 −9
−3 0 −4

 (3AT −B)T =

 5 5 −3
10 7 0
3 −9 −4



2. AT =

 1 4
2 5
3 6

 , AT −B =

 2 0
2 4
1 −1

 , 3(AT −B) =

 6 0
6 12
3 −3


BT =

[
−1 0 2
4 1 7

]
, 3A− 3BT =

[
3 6 9
12 15 18

]
−

[
−3 0 6
12 3 21

]
=

[
6 6 3
0 12 −3

]
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Matrix Multiplication
�
�

�
�7.2

Introduction
When we wish to multiply matrices together we have to ensure that the operation is possible - and
this is not always so. Also, unlike number arithmetic and algebra, even when the product exists the
order of multiplication may have an effect on the result. In this Section we pick our way through the
minefield of matrix multiplication.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• understand the concept of a matrix and
associated terms.

'

&

$

%
Learning Outcomes

On completion you should be able to . . .

• decide when the product AB exists

• recognise that AB 6= BA in most cases

• carry out the multiplication AB

• explain what is meant by the identity matrix I

HELM (2008):
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1. Multiplying row matrices and column matrices together

Let A be a 1× 2 row matrix and B be a 2× 1 column matrix:

A =
[

a b
]

B =

[
c
d

]
The product of these two matrices is written AB and is the 1× 1 matrix defined by:

AB =
[

a b
]
×
[

c
d

]
= [ac + bd]

Note that corresponding elements are multiplied together and the results are then added together.
For example[

2 − 3
]
×
[

6
5

]
= [12− 15] = [−3]

This matrix product is easily generalised to other row and column matrices. For example if C is a
1× 4 row matrix and D is a 4× 1 column matrix:

C =
[

2 − 4 3 2
]

B =


3
3

−2
5


then we define the product of C with D as

CD =
[

2 − 4 3 2
]
×


3
3

−2
5

 = [6− 12− 6 + 10] = [−2]

The only requirement is that the number of elements of the row matrix is the same as the number
of elements of the column matrix.

2. Multiplying two 2×××2 matrices

If A and B are two matrices then the product AB is obtained by multiplying the rows of A with the
columns of B in the manner described above. This will only be possible if the number of elements
in the rows of A is the same as the number of elements in the columns of B. In particular, we
define the product of two 2× 2 matrices A and B to be another 2× 2 matrix C whose elements are
calculated according to the following pattern[

a b
c d

]
×
[

w x
y z

]
=

[
aw + by ax + bz
cw + dy cx + dz

]
A B = C

The rule for calculating the elements of C is described in the following Key Point:

16 HELM (2008):
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Key Point 4

Matrix Product

AB = C

The element in the ith row and jth column of C is obtained
by multiplying the ith row of A with the jth column of B.

We illustrate this construction for the abstract matrices A and B given above:

[
a b
c d

]
×
[

w x
y z

]
=


[

a b
] [ w

y

] [
a b

] [ x
z

]
[

c d
] [ w

y

] [
c d

] [ x
z

]
 =

[
aw + by ax + bz
cw + dy cx + dz

]

For example

[
2 −1
3 −2

]
×
[

2 4
6 1

]
=


[

2 − 1
] [ 2

6

] [
2 − 1

] [ 4
1

]
[

3 − 2
] [ 2

6

] [
3 − 2

] [ 4
1

]
 =

[
−2 7
−6 10

]

Task

Find the product AB where A =

[
1 2
3 4

]
B =

[
1 −1

−2 1

]

First write down row 1 of A, column 2 of B and form the first element in product AB:

Your solution

Answer

[1, 2] and

[
−1

1

]
; their product is 1× (−1) + 2× 1 = 1.

Now repeat the process for row 2 of A, column 1 of B:

Your solution

Answer

[3, 4] and

[
1

−2

]
. Their product is 3× 1 + 4× (−2) = −5

HELM (2008):
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Finally find the two other elements of C = AB and hence write down the matrix C:

Your solution

Answer
Row 1 column 1 is 1× 1 + 2× (−2) = −3. Row 2 column 2 is 3× (−1) + 4× 1 = 1

C =

[
−3 1
−5 1

]

Clearly, matrix multiplication is tricky and not at all ‘natural’. However, it is a very important
mathematical procedure with many engineering applications so must be mastered.

3. Some surprising results
We have already calculated the product AB where

A =

[
1 2
3 4

]
and B =

[
1 −1

−2 1

]
Now complete the following task in which you are asked to determine the product BA, i.e. with the
matrices in reverse order.

Task

For matrices A =

[
1 2
3 4

]
and B =

[
1 −1

−2 1

]
form the products of

row 1 of B and column 1 of A row 1 of B and column 2 of A

row 2 of B and column 1 of A row 2 of B and column 2 of A

Now write down the matrix BA:

Your solution

Answer
row 1, column 1 is 1× 1 + (−1)× 3 = −2 row 1, column 2 is 1× 2 + (−1)× 4 = −2

row 2, column 1 is −2× 1 + 1× 3 = 1 row 2, column 2 is −2× 2 + 1× 4 = 0

BA is

[
−2 −2

1 0

]

It is clear that AB and BA are not in general the same. In fact it is the exception that AB = BA.
In the special case in which AB = BA we say that the matrices A and B commute.
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Task

Calculate AB and BA where

A =

[
a b
c d

]
and B =

[
0 0
0 0

]

Your solution

Answer

AB = BA =

[
0 0
0 0

]

We call B the 2× 2 zero matrix written 0 so that A× 0 = 0× A = 0 for any matrix A.

Now in the multiplication of numbers, the equation

ab = 0

implies that either a is zero or b is zero or both are zero. The following task shows that this is not
necessarily true for matrices.

Task

Carry out the multiplication AB where

A =

[
1 1
1 1

]
, B =

[
1 −1

−1 1

]

Your solution

Answer

AB =

[
0 0
0 0

]
Here we have a zero product yet neither A nor B is the zero matrix! Thus the statement AB = 0
does not allow us to conclude that either A = 0 or B = 0.
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Task

Find the product AB where A =

[
a b
c d

]
and B =

[
1 0
0 1

]

Your solution

Answer

AB =

[
a b
c d

]
= A

The matrix

[
1 0
0 1

]
is called the identity matrix or unit matrix of order 2, and is usually denoted

by the symbol I. (Strictly we should write I2, to indicate the size.) I plays the same role in matrix
multiplication as the number 1 does in number multiplication.

Hence

just as a× 1 = 1× a = a for any number a, so AI = IA = A for any matrix A.

4. Multiplying two 3×3 matrices
The definition of the product C = AB where A and B are two 3× 3 matrices is as follows

C =

 a b c
d e f
g h i

 r s t
u v w
x y z

 =

 ar + bu + cx as + bv + cy at + bw + cz
dr + eu + fx ds + ev + fy dt + ew + fz
gr + hu + ix gs + hv + iy gt + hw + iz


This looks a rather daunting amount of algebra but in fact the construction of the matrix on the
right-hand side is straightforward if we follow the simple rule from Key Point 4 that the element in
the ith row and jth column of C is obtained by multiplying the ith row of A with the jth column of
B.

For example, to obtain the element in row 2, column 3 of C we take row 2 of A: [d, e, f ] and multiply
it with column 3 of B in the usual way to produce [dt + ew + fz].

By repeating this process we obtain every element of C.

20 HELM (2008):
Workbook 7: Matrices



®

Task

Calculate AB =

 1 2 −1
3 4 0
1 5 −2

 2 −1 3
1 −2 1
0 3 −2



First find the element in row 2 column 1 of the product:

Your solution

Answer

Row 2 of A is (3, 4, 0) column 1 of B is

 2
1
0


The combination required is 3× 2 + 4× 1 + (0)× (0) = 10.

Now complete the multiplication to find all the elements of the matrix AB:

Your solution

Answer
In full detail, the elements of AB are: 1× 2 + 2× 1 + (−1)× 0 1× (−1) + 2× (−2) + (−1)× 3 1× 3 + 2× 1 + (−1)× (−2)

3× 2 + 4× 1 + 0× 0 3× (−1) + 4× (−2) + 0× 3 3× 3 + 4× 1 + 0× (−2)
1× 2 + 5× 1 + (−2)× 0 1× (−1) + 5× (−2) + (−2)× 3 1× 3 + 5× 1 + (−2)× (−2)


i.e. AB =

 4 −8 7
10 −11 13
7 −17 12



The 3 × 3 unit matrix is: I =

 1 0 0
0 1 0
0 0 1

 and as in the 2 × 2 case this has the property that

AI = IA = A

The 3× 3 zero matrix is

 0 0 0
0 0 0
0 0 0
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5. Multiplying non-square matrices together
So far, we have just looked at multiplying 2 × 2 matrices and 3 × 3 matrices. However, products
between non-square matrices may be possible.

Key Point 5

General Matrix Products

The general rule is that an n× p matrix A can be multiplied

by a p×m matrix B to form an n×m matrix AB = C.

In words:

For the matrix product AB to be defined the number

of columns of A must equal the number of rows of B.

The elements of C are found in the usual way:

The element in the ith row and jth column of C is obtained

by multiplying the ith row of A with the jth column of B.

Example 4

Find the product AB if A =

[
1 2 2
2 3 4

]
and B =

 2 5
6 1
4 3



Solution

Since A is a 2 × 3 and B is a 3 × 2 matrix the product AB can be found and results in a 2 × 2
matrix.

AB =

[
1 2 2
2 3 4

]
×

 2 5
6 1
4 3

 =



[
1 2 2

]  2
6
4

 [
1 2 2

]  5
1
3


[

2 3 4
]  2

6
4

 [
2 3 4

]  5
1
3




=

[
22 13
38 25

]
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Task

Obtain the product AB if A =

[
1 −2
2 −3

]
and B =

[
2 4 1
6 1 0

]

Your solution

Answer
AB is a 2× 3 matrix.

AB =

[
1 −2
2 −3

]
×
[

2 4 1
6 1 0

]
=


[

1 − 2
] [ 2

6

] [
1 − 2

] [ 4
1

] [
1 − 2

] [ 1
0

]
[

2 − 3
] [ 2

6

] [
2 − 3

] [ 4
1

] [
2 − 3

] [ 1
0

]


=

[
−10 2 1
−14 5 2

]

6. The rules of matrix multiplication
It is worth noting that the process of multiplication can be continued to form products of more than
two matrices.
Although two matrices may not commute (i.e. in general AB 6= BA) the associative law always
holds i.e. for matrices which can be multiplied,

A(BC) = (AB)C.

The general principle is keep the left to right order, but within that limitation any two adjacent
matrices can be multiplied.
It is important to note that it is not always possible to multiply together any two given matrices.

For example if A =

[
1 2
3 4

]
and B =

[
a b c
d e f

]
then AB =

[
a + 2d b + 2e c + 2f
3a + 4d 3b + 4e 3c + 4f

]
.

However BA =

[
a b c
d e f

] [
1 2
3 4

]
is not defined since each row of B has three elements

whereas each column of A has two elements and we cannot multiply these elements in the manner
described.
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Task

Given A =

[
1 3 5
2 4 6

]
, B =

[
1 2
3 4

]
, C =

 1 4
2 5
3 6



State which of the products AB, BA, AC, CA, BC, CB, (AB)C, A(CB) is defined and state
the size (n×m) of the product when defined.

Your solution

AB

BA

AC

CA

BC

CB

(AB)C

A(CB)

Answer

A B

2× 3 2× 2
not possible

B A

2× 2 2× 3
possible; result 2× 3

A C

2× 3 3× 2
possible; result 2× 2

C A

3× 2 2× 3
possible; result 3× 3

B C

2× 2 3× 2
not possible

C B

3× 2 2× 2
possible; result 3× 2

(AB)C not possible, AB not defined.
A (C B)

2× 3 3× 2
possible; result 2× 2

We now list together some properties of matrix multiplication and compare them with corresponding
properties for multiplication of numbers.

Key Point 6

Matrix algebra Number algebra
A(B + C) = AB + AC a(b + c) = ab + ac
AB 6= BA in general ab = ba

A(BC) = (AB)C a(bc) = (ab)c
AI = IA = A 1.a = a.1 = a
A0 = 0A = 0 0.a = a.0 = 0

AB may not be possible ab is always possible
AB = 0 does not imply A = 0 or B = 0 ab = 0 → a = 0 or b = 0
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Application of matrices to networks

A network is a collection of points (nodes) some of which are connected together by lines (paths).
The information contained in a network can be conveniently stored in the form of a matrix.

Example 5
Petrol is delivered to terminals T1 and T2. They distribute the fuel to 3 storage
depots (S1, S2, S3). The network diagram below shows what fraction of the fuel
goes from each terminal to the three storage depots. In turn the 3 depots supply
fuel to 4 petrol stations (P1, P2, P3, P4) as shown in Figure 2:

T1 T2

S1 S2 S3

P1 P2 P3 P4

0.4

0.6

0.4
0.4 0.3

0.5 0.2

0.1
0.6

0.2

0.2

0.2

0.5
0.2

0.2

Figure 2

Show how this situation may be described using matrices.

Solution

Denote the amount of fuel, in litres, flowing from T1 by t1 and from T2 by t2 and the quantity being
received at Si by si for i = 1, 2, 3. This situation is described in the following diagram:

S1 S2 S3

T1 T2

0.4
0.4 0.3

0.5 0.20.2

From this diagram we see that

s1 = 0.4t1 + 0.5t2
s2 = 0.4t1 + 0.2t2
s3 = 0.2t1 + 0.3t2

or, in matrix form:

s1

s2

s3

 =

0.4 0.5
0.4 0.2
0.2 0.3

[t1
t2

]
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Solution (contd.)

In turn the 3 depots supply fuel to 4 petrol stations as shown in the next diagram:

S1 S2 S3

P1 P2 P3 P4

0.4

0.60.1
0.6

0.2

0.2

0.5
0.2

0.2

If the petrol stations receive p1, p2, p3, p4 litres respectively then from the diagram we have:

p1 = 0.6s1 + 0.2s2

p2 = 0.2s1 + 0.5s2

p3 = 0.2s1 + 0.2s2 + 0.4s3

p4 = 0.1s2 + 0.6s3

or, in matrix form:


p1

p2

p3

p4

 =


0.6 0.2 0
0.2 0.5 0
0.2 0.2 0.4
0 0.1 0.6


s1

s2

s3


Combining the equations, substituting expressions for s1, s2, s3 in the equations for p1, p2, p3, p4

we get:

p1 = 0.6s1 + 0.2s2

= 0.6(0.4t1 + 0.5t2) + 0.2(0.4t1 + 0.2t1)

= 0.32t1 + 0.34t2

with similar results for p2, p3 and p4.

This is equivalent to combining the two networks. The results can be obtained more easily by
multiplying the matrices:


p1

p2

p3

p4

 =


0.6 0.2 0
0.2 0.5 0
0.2 0.2 0.4
0 0.1 0.6


s1

s2

s3



=


0.6 0.2 0
0.2 0.5 0
0.2 0.2 0.4
0 0.1 0.6


0.4 0.5

0.4 0.2
0.2 0.3

[t1
t2

]

=


0.32 0.34
0.28 0.20
0.24 0.26
0.16 0.20

[t1t2
]

=


0.32t1 + 0.34t2
0.28t1 + 0.20t2
0.24t1 + 0.26t2
0.16t1 + 0.20t2
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Engineering Example 1

Communication network

Problem in words

Figure 3 represents a communication network. Vertices a, b, f and g represent offices. Vertices c, d
and e represent switching centres. The numbers marked along the edges represent the number of
connections between any two vertices. Calculate the number of routes from a and b to f and g

a

b

c

d

e

f

g1

2

3
4

6

1
1

1

2

2

3

3

Figure 3: A communication network where a, b, f and g are offices

and c, d and e are switching centres

Mathematical statement of the problem
The number of routes from a to f can be calculated by taking the number via c plus the number via
d plus the number via e. In each case this is given by multiplying the number of connections along
the edges connecting a to c, c to f etc. This gives the result:
Number of routes from a to f = 3× 2 + 4× 6 + 1× 1 = 31.

The nature of matrix multiplication means that the number of routes is obtained by multiplying the
matrix representing the number of connections from ab to cde by the matrix representing the number
of connections from cde to fg.

Mathematical analysis
The matrix representing the number of routes from ab to cde is:

( c d e

a 3 4 1

b 2 1 3

)
The matrix representing the number of routes from cde to fg is:


f g

c 2 1

d 6 3

e 1 2
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The product of these two matrices gives the total number of routes.(
3 4 1
2 1 3

)  2 1
6 3
1 2

 =

(
3× 2 + 4× 6 + 1× 1 3× 1 + 4× 3 + 1× 2
2× 2 + 1× 6 + 3× 1 2× 1 + 1× 3 + 3× 2

)
=

(
31 17
13 11

)

Interpretation
We can interpret the resulting (product) matrix by labelling the columns and rows.

( f g

a 31 17

b 13 11

)
Hence there are 31 routes from a to f , 17 from a to g, 13 from b to f and 11 from b to g.
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Exercises

1. If A =

[
1 2
3 4

]
B =

[
5 6
7 8

]
C =

[
0 −1
2 −3

]
find

(a) AB, (b) AC, (c) (A + B)C, (d) AC + BC (e) 2A− 3C

2. If a rotation through an angle θ is represented by the matrix A =

[
cos θ sin θ

− sin θ cos θ

]
and a

second rotation through an angle φ is represented by the matrix B =

[
cos φ sin φ

− sin φ cos φ

]
show

that both AB and BA represent a rotation through an angle θ + φ.

3. If A =

 1 2 3
−1 −1 −1

2 2 2

 , B =

 2 4
−1 2

5 6

 , C =

[
2 1
1 2

]
, find AB and BC.

4. If A =

[
1 2 −1
0 −1 2

]
, B =

 1 2 3
5 0 0
1 2 −1

 , C =

 0
1

−2

 ,

verify A(BC) = (AB)C.

5. If A =

 2 3 −1
0 1 2
4 5 6

 then show that AAT is symmetric.

6. If A =

[
11 0
2 1

]
B =

[
0 1 2
1 1 3

]
verify that (AB)T =

 0 1
11 3
22 7

 = BT AT

Answers

1. (a) AB =

[
19 22
43 50

]
(b) AC =

[
4 −7
8 −15

]
(c) (A + B)C =

[
16 −30
24 −46

]
(d) AC + BC =

[
16 −30
24 −46

]
(e)

[
2 7
0 17

]

2. AB =

[
cos θ cos φ− sin θ sin φ cos θ sin φ + sin θ cos φ

− sin θ cos φ− cos θ sin φ − sin θ sin φ + cos θ cos φ

]
=

[
cos(θ + φ) sin(θ + φ)

− sin(θ + φ) cos(θ + φ)

]
which clearly represents a rotation through angle θ + φ. BA gives the same result.

3. AB =

 15 26
−6 −12
12 24

, BC =

 8 10
0 3

16 17


4. A(BC) = (AB)C =

[
−8

8

]
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Determinants
�
�

�
�7.3

Introduction
Among other uses, determinants allow us to determine whether a system of linear equations has a
unique solution or not. The evaluation of a determinant is a key skill in engineering mathematics and
this Section concentrates on the evaluation of small size determinants. For evaluating larger sizes we
can often use some properties of determinants to help simplify the task.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• know what a matrix is

'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• evaluate a 2× 2 determinant

• use the method of expansion along the top
row to evaluate a determinant

• use the properties of determinants to aid
their evaluation
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1. Determinant of a 2×××2 matrix

The determinant of the matrix A =

[
a b
c d

]
is denoted by

∣∣∣∣ a b
c d

∣∣∣∣ (note the change from square

brackets to vertical lines) and is defined to be the number ad− bc. That is:∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc

We can use the notation det(A) or | A | or ∆ to denote the determinant of A.

Task

Find the determinants of the matrices

A =

[
1 2
3 4

]
, B =

[
4 −1

−2 −3

]
, C =

[
0 0
0 0

]
D =

[
1 0
2 3

]
,

E =

[
2 0
0 4

]
, F =

[
−1 0

0 −3

]
, G =

[
1 2

−2 −4

]
.

Your solution

Answer
| A |= 1× 4− 2× 3 = −2 | B |= 4× (−3)− (−1)× (−2) = −12− 2 = −14

| C |= 0 | D |= 3 | E |= 8 | F |= 3 | G |= −4 + 4 = 0

2. Laplace expansion along the top row
This is a technique which can be used to evaluate determinants of any order. In principle, this method
can use any row or any column as its starting point. We quote one example: using the top row.

Consider ∆ =

∣∣∣∣∣∣
4 1 1
1 2 3
3 1 2

∣∣∣∣∣∣.
First we introduce the idea of a minor. Each element in this array of numbers has an associated
minor formed by removing the column and row in which the element lies and taking the determinant
of the remainder. For example consider element a23 = 3. We strike out the second row and the third
column:

4 1 1
1 2 3
3 1 2

to leave

∣∣∣∣ 4 1
3 1

∣∣∣∣ = 4− 3 = 1.

For the element a31 = 3 we strike out the third row and first column:

4 1 1
1 2 3
3 1 2

to leave

∣∣∣∣ 1 1
2 3

∣∣∣∣ = 3− 2 = 1.
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Task

What is the minor of the element a22 = 2?

Your solution

Answer∣∣∣∣ 4 1
3 2

∣∣∣∣ = 8− 3 = 5

Next we introduce the idea of a cofactor. This is a minor with a sign attached. The appropriate
sign comes from the pattern of signs appropriate to a 3× 3 array:

+ − +
− + −
+ − +

(i.e. positive signs on the leading diagonal and the signs ‘alternate’ everywhere else.)
Each element has a cofactor associated with it. The cofactor of element a11 is denoted by A11, that
of a23 by A23 and so on.

To obtain the cofactor of an element of a 3× 3 matrix we simply multiply the minor of that element
by the corresponding sign from the 3× 3 array of signs.
Hence the cofactor corresponding to a23 is

A23 = −
∣∣∣∣ 4 1

3 1

∣∣∣∣ = −1

and the cofactor corresponding to a31 is A31 = +

∣∣∣∣ 1 1
2 3

∣∣∣∣ = 1.

Task

What is the cofactor of the element a22?

Your solution

Answer
The sign in the position of a22 in the array of signs is +

Hence, since the minor of this element is +5 the cofactor is A22 = +5.

Cofactors are important as it can be shown that the value of the determinant of a 3× 3 matrix can
be found from the formula

∆ = a11A11 + a12A12 + a13A13.
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In words “the determinant of a 3× 3 matrix is obtained by multiplying each element of the first row
by its corresponding cofactor and then adding the three together”. (In fact this rule can be extended
to apply to any row or any column and to any order square matrix.)

Key Point 7

Evaluating General Determinants

If A is an n× n square matrix then : det(A) =
n∑

j=1

aijAij

In words:

The determinant of a square matrix is obtained by multiplying each element

of row i by its corresponding cofactor and then adding these products together.

In the case of ∆ =

∣∣∣∣∣∣
4 1 1
1 2 3
3 1 2

∣∣∣∣∣∣ we have a11 = 4, a12 = 1, a13 = 1,

A11 = +

∣∣∣∣ 2 3
1 2

∣∣∣∣ = 4− 3 = 1

A12 = −
∣∣∣∣ 1 3

3 2

∣∣∣∣ = −(2− 9) = 7

A13 = +

∣∣∣∣ 1 2
3 1

∣∣∣∣ = 1− 6 = −5

Hence ∆ = 4× 1 + 1× 7 + 1×−5 = 6.

Alternatively, choosing to expand along the second row:

∆ = a21A21 + a22A22 + a23A23

= 1

(
−

∣∣∣∣ 1 1
1 2

∣∣∣∣) + 2

(∣∣∣∣ 4 1
3 2

∣∣∣∣) + 3

(
−

∣∣∣∣ 4 1
3 1

∣∣∣∣) = 6 as before.
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Task

Use expansion along the first row to find ∆ =

∣∣∣∣∣∣
1 −1 3
0 2 6

−2 1 5

∣∣∣∣∣∣
Your solution

Answer
a11 = 1, a12 = −1, a13 = 3

A11 = +

∣∣∣∣ 2 6
1 5

∣∣∣∣ = 10− 6 = 4

A12 = −
∣∣∣∣ 0 6
−2 5

∣∣∣∣ = −(0 + 12) = −12

A13 = +

∣∣∣∣ 0 2
−2 1

∣∣∣∣ = 2 + 2 = 4.

Hence ∆ = 1× 4 + (−1)× (−12) + 3× 4 = 4 + 12 + 12 = 28, as before.

3. Properties of determinants
Often, especially with determinants of large order, we can simplify the evaluation rules. In this Section
we quote some useful properties of determinants in general.

1. If two rows (or two columns) of a determinant are interchanged then the value of the determi-
nant is multiplied by (−1).

For example

∣∣∣∣ 4 3
1 2

∣∣∣∣ = 8 − 3 = 5 but (interchanging columns)

∣∣∣∣ 3 4
2 1

∣∣∣∣ = 3 − 8 = −5 and

(interchanging rows)

∣∣∣∣ 1 2
4 3

∣∣∣∣ = 3− 8 = −5.

2. The determinant of a matrix A and the determinant of its transpose AT are equal.∣∣∣∣ 1 2
3 4

∣∣∣∣ =

∣∣∣∣ 1 3
2 4

∣∣∣∣ = 4− 6 = −2
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3. If two rows (or two columns) of a matrix A are equal then it has zero determinant.

For example, the following determinant has two identical rows:

∣∣∣∣∣∣
1 2 3
1 2 3
4 5 6

∣∣∣∣∣∣ = 1×
(∣∣∣∣ 2 3

5 6

∣∣∣∣) + 2×
(
−

∣∣∣∣ 1 3
4 6

∣∣∣∣) + 3×
(∣∣∣∣ 1 2

4 5

∣∣∣∣)
= −3 + 2× (6) + 3× (−3) = 0.

4. If the elements of one row (or one column) of a determinant are multiplied by k, then the
resulting determinant is k times the given determinant:∣∣∣∣∣∣

1 2 3
4 8 6
7 8 9

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
1 2 3
2 4 3
7 8 9

∣∣∣∣∣∣ .

Note that if one row (or column) of a determinant is a multiple of another row (or column)
then the value of the determinant is zero. (This follows from properties 3 and 4.)

For example:∣∣∣∣∣∣
2 4 −1
4 2 1

−4 −8 2

∣∣∣∣∣∣ = 2×
∣∣∣∣ 2 1
−8 2

∣∣∣∣ + 4×
(
−

∣∣∣∣ 4 1
−4 2

∣∣∣∣)− 1×
∣∣∣∣ 4 2
−4 −8

∣∣∣∣
= 2(12) + 4(−12)− (−24) = 0

This is predictable as the 3rd row is (−2) times the first row.

5. If we add (or subtract) a multiple of one row (or column) to another, the value of the deter-
minant is unchanged.

Given

∣∣∣∣ 1 2
4 5

∣∣∣∣, add (2 × row 1) to (row 2) gives

∣∣∣∣ 1 2
4 + 2× 1 5 + 2× 2

∣∣∣∣ =

∣∣∣∣ 1 2
6 9

∣∣∣∣ = 9− 12 = −3 =

∣∣∣∣ 1 2
4 5

∣∣∣∣
6. The determinant of a lower triangular matrix, an upper triangular matrix or a diagonal matrix

is the product of the elements on the leading diagonal.

As an example, it is easily confirmed that each of the following determinants has the same
value 1× 4× 6 = 24.∣∣∣∣∣∣

1 2 3
0 4 5
0 0 6

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
1 0 0
2 4 0
3 5 6

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
1 0 0
0 4 0
0 0 6

∣∣∣∣∣∣
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Task

This task is in four parts. Consider

∆ =

∣∣∣∣∣∣∣∣
1 4 8 2
2 −1 1 −3
0 2 4 2
0 3 6 3

∣∣∣∣∣∣∣∣
(a) Use property 2 to find another matrix whose determinant is equal to ∆:

Your solution

Answer

∆ =

∣∣∣∣∣∣∣∣
1 2 0 0
4 −1 2 3
8 1 4 6
2 −3 2 3

∣∣∣∣∣∣∣∣, by transposing the matrix.

(b) Now expand along the top row to express ∆ as the sum of two products, each of a number and
a 3× 3 determinant:

Your solution

Answer

∆ = 1×

∣∣∣∣∣∣
−1 2 3

1 4 6
−3 2 3

∣∣∣∣∣∣− 2×

∣∣∣∣∣∣
4 2 3
8 4 6
2 2 3

∣∣∣∣∣∣
(c) Use the statement after property 4 to show that the second of the 3× 3 determinants is zero:

Your solution

Answer

In the second 3× 3 determinant, row 2 = 2×row 1 hence the determinant has value zero.

(d) Use the statement after property 4 to evaluate the first determinant:

Your solution

Answer
In the first 3 × 3 determinant column 3 = 3

2
× column 2. Hence this determinant is also zero.

Therefore ∆ = 0.
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Exercises

1. Use Laplace expansion along the 1st row to determine∣∣∣∣∣∣
3 1 −4
6 9 −2

−1 2 1

∣∣∣∣∣∣
Show that the same value is obtained if you choose any other row or column for your expansion.

2. Using any of the properties of determinants to minimise the arithmetic, evaluate

(a)

∣∣∣∣∣∣
12 27 12
28 18 24
70 15 40

∣∣∣∣∣∣ (b)

∣∣∣∣∣∣∣∣
2 4 6 4
0 4 6 9
2 1 4 0
1 2 3 2

∣∣∣∣∣∣∣∣
3. Find the cofactors of x, y, z in the determinant∣∣∣∣∣∣

1 1 1
2 3 4
x y z

∣∣∣∣∣∣
4. Prove that, no matter what the values of x, y, z, are∣∣∣∣∣∣

y + z z + x x + y
x y z
1 1 1

∣∣∣∣∣∣ = 0

Answers

1. 3

∣∣∣∣ 9 −2
2 1

∣∣∣∣− 1

∣∣∣∣ 6 −2
−1 1

∣∣∣∣− 4

∣∣∣∣ 6 9
−1 2

∣∣∣∣ = 3(9 + 4)− 1(6− 2)− 4(12 + 9) = −49

2. (a) Take out common factors in rows and columns

720

∣∣∣∣∣∣
2 3 1
7 3 3
7 1 2

∣∣∣∣∣∣ = 720

∣∣∣∣∣∣
0 0 1
1 −6 3
3 −5 2

∣∣∣∣∣∣ using (−2C3 + C1) then (−3C3 + C2).

The value of the determinant (expand along top row) is then easily found
as 720× 13 = 9360.

(b) Zero since (row 1) is 2 × (row 4).

3. Cofactors of x, y, z are 1,−2, 1 respectively.
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The Inverse of a Matrix
�
�

�
�7.4

Introduction

In number arithmetic every number a (6= 0) has a reciprocal b written as a−1 or
1

a
such that

ba = ab = 1. Some, but not all, square matrices have inverses. If a square matrix A has an inverse,
A−1, then

AA−1 = A−1A = I.

We develop a rule for finding the inverse of a 2 × 2 matrix (where it exists) and we look at two
methods of finding the inverse of a 3× 3 matrix (where it exists).

Non-square matrices do not possess inverses so this Section only refers to square matrices.

#

"

 

!
Prerequisites

Before starting this Section you should . . .

• be familiar with the algebra of matrices

• be able to calculate a determinant

• know what a cofactor is'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• state the condition for the existence of an
inverse matrix

• use the formula for finding the inverse of
a 2× 2 matrix

• find the inverse of a 3× 3 matrix using row
operations and using the determinant method
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1. The inverse of a square matrix
We know that any non-zero number k has an inverse; for example 2 has an inverse 1

2
or 2−1. The

inverse of the number k is usually written 1
k

or, more formally, by k−1. This numerical inverse has
the property that

k × k−1 = k−1 × k = 1

We now show that an inverse of a matrix can, in certain circumstances, also be defined.

Given an n × n square matrix A, then an n × n square matrix B is said to be the inverse matrix
of A if

AB = BA = I

where I is, as usual, the identity matrix (or unit matrix) of the appropriate size.

Example 6
Show that the inverse matrix of A =

[
−1 1
−2 0

]
is B =

[
0 −1

2

1 −1
2

]

Solution

All we need do is to check that AB = BA = I.

AB =

[
−1 1
−2 0

]
× 1

2

[
0 −1
2 −1

]
= 1

2

[
−1 1
−2 0

]
×

[
0 −1
2 −1

]
= 1

2

[
2 0
0 2

]
=

[
1 0
0 1

]
The reader should check that BA = I also.

We make three important remarks:

• Non-square matrices do not have inverses.

• The inverse of A is usually written A−1.

• Not all square matrices have inverses.

Task

Consider A =

[
1 0
2 0

]
, and let B =

[
a b
c d

]
be a possible inverse of A.

(a) Find AB and BA:

Your solution

AB = BA =
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Answer

AB =

[
a b

2a 2b

]
, BA =

[
a + 2b 0
c + 2d 0

]

(b) Equate the elements of AB to those of I =

[
1 0
0 1

]
and solve the resulting equations:

Your solution

Answer

a = 1, b = 0, 2a = 0, 2b = 1. Hence a = 1, b = 0, a = 0, b = 1
2
. This is not possible!

Hence, we have a contradiction. The matrix A therefore has no inverse and is said to be a singular
matrix. A matrix which has an inverse is said to be non-singular.

• If a matrix has an inverse then that inverse is unique.
Suppose B and C are both inverses of A. Then, by definition of the inverse,

AB = BA = I and AC = CA = I

Consider the two ways of forming the product CAB

1. CAB = C(AB) = CI = C

2. CAB = (CA)B = IB = B.

Hence B = C and the inverse is unique.

• There is no such operation as division in matrix algebra.

We do not write
B

A
but rather

A−1B or BA−1,

depending on the order required.

• Assuming that the square matrix A has an inverse A−1 then the solution of

the system of equations AX = B is found by pre-multiplying both sides by A−1.

AX = B

pre-multiplying by A−1 : A−1(AX) = A−1B,

using associativity: A−1A)X = A−1B

using A−1A = I : IX = A−1B,

using property of I : X = A−1B which is the solution we seek.
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2. The inverse of a 2×××2 matrix
In this subsection we show how the inverse of a 2× 2 matrix can be obtained (if it exists).

Task

Form the matrix products AB and BA where

A =

[
a b
c d

]
and B =

[
d −b
−c a

]

Your solution

AB = BA =

Answer

AB =

[
ad− bc 0

0 ad− bc

]
= (ad− bc)

[
1 0
0 1

]
= (ad− bc)I

BA =

[
ad− bc 0

0 ad− bc

]
= (ad− bc)I

You will see that had we chosen C =
1

ad− bc

[
d −b
−c a

]
instead of B then both products AC

and CA will be equal to I. This requires ad − bc 6= 0. Hence this matrix C is the inverse of A.

However, note, that if ad− bc = 0 then A has no inverse. (Note that for the matrix A =

[
1 0
2 0

]
,

which occurred in the last task, ad − bc = 1 × 0 − 0 × 2 = 0 confirming, as we found, that A has
no inverse.)

Key Point 8

The Inverse of a 2×××2 Matrix

If ad− bc 6= 0 then the 2× 2 matrix A =

[
a b
c d

]
has a (unique) inverse given by

A−1 =
1

ad− bc

[
d −b
−c a

]
Note that ad− bc = |A|, the determinant of the matrix A.

In words: To find the inverse of a 2× 2 matrix A we interchange the diagonal elements, change the
sign of the other two elements, and then divide by the determinant of A.
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Task

Which of the following matrices has an inverse?

A =

[
1 0
2 3

]
, B =

[
1 1

−1 1

]
, C =

[
1 −1

−2 2

]
, D =

[
1 0
0 1

]

Your solution

Answer
|A| = 1× 3− 0× 2 = 3; |B| = 1 + 1 = 2; |C| = 2− 2 = 0; |D| = 1− 0 = 1.

Therefore, A, B and D each has an inverse. C does not because it has a zero determinant.

Task

Find the inverses of the matrices A, B and D in the previous Task.

Use Key Point 8:

Your solution

A−1 = B−1 = C−1 =

Answer

A−1 = 1
3

[
3 0

−2 1

]
, B−1 = 1

2

[
1 −1
1 1

]
, D−1 =

[
1 0
0 1

]
= D

It can be shown that the matrix A =

[
cos θ sin θ

− sin θ cos θ

]
represents an anti-clockwise rotation

through an angle θ in an xy-plane about the origin. The matrix B represents a rotation clockwise
through an angle θ. It is given therefore by

B =

[
cos(−θ) sin(−θ)

− sin(−θ) cos(−θ)

]
=

[
cos θ − sin θ
sin θ cos θ

]
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Task

Form the products AB and BA for these ‘rotation matrices’. Confirm that B is
the inverse matrix of A.

Your solution

AB =

BA =

Answer

AB =

[
cos θ sin θ

− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]
=

[
cos2 θ + sin2 θ − cos θ sin θ + sin θ cos θ

− sin θ cos θ + cos θ sin θ sin2 θ + cos2 θ

]
=

[
1 0
0 1

]
= I

Similarly, BA = I

Effectively: a rotation through an angle θ followed by a rotation through angle −θ is equivalent to
zero rotation.
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3. The inverse of a 3×××3 matrix - Gauss elimination method
It is true, in general, that if the determinant of a matrix is zero then that matrix has no inverse. If
the determinant is non-zero then the matrix has a (unique) inverse. In this Section and the next we
look at two ways of finding the inverse of a 3×3 matrix; larger matrices can be inverted by the same
methods - the process is more tedious and takes longer. The 2 × 2 case could be handled similarly
but as we have seen we have a simple formula to use.

The method we now describe for finding the inverse of a matrix has many similarities to a technique
used to obtain solutions of simultaneous equations. This method involves operating on the rows of
a matrix in order to reduce it to a unit matrix.
The row operations we shall use are

(i) interchanging two rows

(ii) multiplying a row by a constant factor

(iii) adding a multiple of one row to another.

Note that in (ii) and (iii) the multiple could be negative or fractional, or both.

The Gauss elimination method is outlined in the following Key Point:

Key Point 9

Matrix Inverse − Gauss Elimination Method

We use the result, quoted without proof, that:

if a sequence of row operations applied to a square matrix A reduces
it to the identity matrix I of the same size then the same sequence of

operations applied to I reduces it to A−1.

Three points to note:

• If it is impossible to reduce A to I then A−1 does not exist. This will become evident by the
appearance of a row of zeros.

• There is no unique procedure for reducing A to I and it is experience which leads to selection
of the optimum route.

• It is more efficient to do the two reductions, A to I and I to A−1, simultaneously.
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Suppose we wish to find the inverse of the matrix

A =

 1 3 3
1 4 3
2 7 7


We first place A and I adjacent to each other. 1 3 3

1 4 3
2 7 7

  1 0 0
0 1 0
0 0 1


Phase 1

We now proceed by changing the columns of A left to right to reduce A to the form

 1 ∗ ∗
0 1 ∗
0 0 1


where ∗ can be any number. This form is called upper triangular.
First we subtract row 1 from row 2 and twice row 1 from row 3. ‘Row’ refers to both matrices. 1 3 3

1 4 3
2 7 7

  1 0 0
0 1 0
0 0 1

 R2−R1
R3− 2R1

⇒

 1 3 3
0 1 0
0 1 1

  1 0 0
−1 1 0
−2 0 1


Now we subtract row 2 from row 3 1 3 3

0 1 0
0 1 1

  1 0 0
−1 1 0
−2 0 1


R3−R2

⇒

 1 3 3
0 1 0
0 0 1

  1 0 0
−1 1 0
−1 −1 1


Phase 2

This consists of continuing the row operations to reduce the elements above the leading diagonal to
zero.
We proceed right to left. We subtract 3 times row 3 from row 1 (the elements in row 2 column 3 is
already zero.) 1 3 3

0 1 0
0 0 1

  1 0 0
−1 1 0

1 1 1


R1− 3R3

⇒

 1 3 0
0 1 0
0 0 1

  4 3 −3
−1 1 0
−1 −1 1


Finally we subtract 3 times row 2 from row 1. 1 3 0

0 1 0
0 0 1

  4 3 −3
−1 1 0
−1 −1 1


R1− 3R2

⇒

 1 0 0
0 1 0
0 0 1

  7 0 −3
−1 1 0
−1 −1 1


Then we have A−1 =

 7 0 −3
−1 1 0
−1 −1 1


(This can be verified by showing that AA−1 = I or A−1A = I.)
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Task

Consider A =

 0 1 1
2 3 −1

−1 2 1

 , I =

 1 0 0
0 1 0
0 0 1

.

Use the Gauss elimination method to obtain A−1.

First interchange rows 1 and 2, then carry out the operation (row 3) + 1
2
(row 1):

Your solution

Answer 0 1 1
2 3 −1

−1 2 1

  1 0 0
0 1 0
0 0 1

 R1 ↔ R2
⇒

 2 3 −1
0 1 1

−1 2 1

  0 1 0
1 0 0
0 0 1


 2 3 −1

0 1 1
−1 2 1

  0 1 0
1 0 0
0 0 1


R3 + 1

2
R1

⇒

 2 3 −1
0 1 1
0 7

2
1
2

 0 1 0
1 0 0
0 1

2
1



Now carry out the operation (row 3)− 7
2
(row 2) followed by (row 1)− 1

3
(row 3)

and (row 2) + 1
3
(row 3):

Your solution
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Answer 2 3 −1
0 1 1
0 7

2
1
2

  0 1 0
1 0 0
0 1

2
1


R3− 7

2
R2

⇒

 2 3 −1
0 1 1
0 0 −3

  0 1 0
1 0 0

−7
2

1
2

1


 2 3 −1

0 1 1
0 0 −3

  0 1 0
1 0 0

−7
2

1
2

1

 R1− 1
3
R3

R2 + 1
3
R3 ⇒

 2 3 0
0 1 0
0 0 −3




+7
6

+5
6
−1

3

−1
6

1
6

1
3

−7
2

1
2

1



Next, subtract 3 times row 2 from row 1, then, divide row 1 by 2 and row 3 by (−3).
Finally identify A−1:

Your solution

Answer

 2 3 0
0 1 0
0 0 −3




7
6

5
6
−1

3

−1
6

1
6

1
3

−7
2

1
2

1


R1− 3R2

⇒

 2 0 0
0 1 0
0 0 −3




10
6

2
6
−4

3

−1
6

1
6

1
3

−7
2

1
2

1



 2 0 0
0 1 0
0 0 −3




10
6

2
6
−4

3

−1
6

1
6

1
3

−7
2

1
2

1


R1÷ 2

R3÷ (−3)
⇒

 1 0 0
0 1 0
0 0 1




5
6

1
6
−2

3

−1
6

1
6

1
3

7
6
−1

6
−1

3



Hence A−1 =


5
6

1
6
−2

3

−1
6

1
6

1
3

7
6
−1

6
−1

3

 =
1

6

 5 1 −4
−1 1 2

7 −1 −2
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4. The inverse of a 3×××3 matrix - determinant method
This method which employs determinants, is of importance from a theoretical perspective. The
numerical computations involved are too heavy for matrices of higher order than 3 × 3 and in such
cases the Gauss elimination approach is prefered.

To obtain A−1 using the determinant approach the steps in the following keypoint are followed:

Key Point 10

Matrix Inverse − the Determinant Method

Given a square matrix A:

• Find |A|. If |A| = 0 then A−1 does not exist. If |A| 6= 0 we can proceed to find the inverse
matrix, as follows.

• Replace each element of A by its cofactor (see Section 7.3).

• Transpose the result to form the adjoint matrix, denoted by adj(A)

• Then calculate A−1 =
1

|A|
adj(A).

Task

Find the inverse of A =

 0 1 1
2 3 −1

−1 2 1

. This will require five stages.

(a) First find |A|:

Your solution

Answer

|A| = 0× 5 + 1× (−1) + 1× 7 = 6
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(b) Now replace each element of A by its minor:

Your solution

Answer

∣∣∣∣ 3 −1
2 1

∣∣∣∣ ∣∣∣∣ 2 −1
−1 1

∣∣∣∣ ∣∣∣∣ 2 3
−1 2

∣∣∣∣∣∣∣∣ 1 1
2 1

∣∣∣∣ ∣∣∣∣ 0 1
−1 1

∣∣∣∣ ∣∣∣∣ 0 1
−1 2

∣∣∣∣∣∣∣∣ 1 1
3 −1

∣∣∣∣ ∣∣∣∣ 0 1
2 −1

∣∣∣∣ ∣∣∣∣ 0 1
2 3

∣∣∣∣


=

 5 1 7
−1 1 1
−4 −2 −2



(c) Now attach the signs from the array

+ − +
− + −
+ − +

(so that where a + sign is met no action is taken and where a − sign is met the sign is changed) to
obtain the matrix of cofactors:

Your solution

Answer 5 −1 7
1 1 −1

−4 2 −2


(d) Then transpose the result to obtain the adjoint matrix:

Your solution
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Answer

Transposing, adj(A) =

 5 1 −4
−1 1 2

7 −1 −2


(e) Finally obtain A−1:

Your solution

Answer

A−1 =
1

det(A)
adj(A) =

1

6

 5 1 −4
−1 1 2

7 −1 −2

 as before using Gauss elimination.

Exercises

1. Find the inverses of the following matrices

(a)

[
1 2
3 4

]
(b)

[
−1 0

0 4

]
(c)

[
1 1

−1 1

]
2. Use the determinant method and also the Gauss elimination method to find the inverse of the

following matrices

(a) A =

 2 1 0
1 0 0
4 1 2

 (b) B =

 1 1 1
0 1 1
0 0 1


Answers

1. (a) −1

2

[
4 −2

−3 1

]
(b)

[
−1 0

0
1

4

]
(c)

1

2

[
1 −1
1 1

]

2. (a) A−1 = −1

2

 0 −2 1
−2 4 2

0 0 −1

T

= −1

2

 0 −2 0
−2 4 0

1 2 −1



(b) B−1 =

 1 0 0
−1 1 0

0 −1 1

T

=

 1 −1 0
0 1 −1
0 0 1
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